
Rocky Enterprise Linux 9.2 Manual Pages on command 'write.2'

$ man write.2

WRITE(2) Linux Programmer's Manual WRITE(2)

NAME

 write - write to a file descriptor

SYNOPSIS

 #include <unistd.h>

 ssize_t write(int fd, const void *buf, size_t count);

DESCRIPTION

 write() writes up to count bytes from the buffer starting at buf to the file referred to

 by the file descriptor fd.

 The number of bytes written may be less than count if, for example, there is insufficient

 space on the underlying physical medium, or the RLIMIT_FSIZE resource limit is encountered

 (see setrlimit(2)), or the call was interrupted by a signal handler after having written

 less than count bytes. (See also pipe(7).)

 For a seekable file (i.e., one to which lseek(2) may be applied, for example, a regular

 file) writing takes place at the file offset, and the file offset is incremented by the

 number of bytes actually written. If the file was open(2)ed with O_APPEND, the file off?

 set is first set to the end of the file before writing. The adjustment of the file offset

 and the write operation are performed as an atomic step.

 POSIX requires that a read(2) that can be proved to occur after a write() has returned

 will return the new data. Note that not all filesystems are POSIX conforming.

 According to POSIX.1, if count is greater than SSIZE_MAX, the result is implementation-de?

 fined; see NOTES for the upper limit on Linux.

RETURN VALUE Page 1/4

 On success, the number of bytes written is returned. On error, -1 is returned, and errno

 is set to indicate the cause of the error.

 Note that a successful write() may transfer fewer than count bytes. Such partial writes

 can occur for various reasons; for example, because there was insufficient space on the

 disk device to write all of the requested bytes, or because a blocked write() to a socket,

 pipe, or similar was interrupted by a signal handler after it had transferred some, but

 before it had transferred all of the requested bytes. In the event of a partial write,

 the caller can make another write() call to transfer the remaining bytes. The subsequent

 call will either transfer further bytes or may result in an error (e.g., if the disk is

 now full).

 If count is zero and fd refers to a regular file, then write() may return a failure status

 if one of the errors below is detected. If no errors are detected, or error detection is

 not performed, 0 will be returned without causing any other effect. If count is zero and

 fd refers to a file other than a regular file, the results are not specified.

ERRORS

 EAGAIN The file descriptor fd refers to a file other than a socket and has been marked

 nonblocking (O_NONBLOCK), and the write would block. See open(2) for further de?

 tails on the O_NONBLOCK flag.

 EAGAIN or EWOULDBLOCK

 The file descriptor fd refers to a socket and has been marked nonblocking (O_NON?

 BLOCK), and the write would block. POSIX.1-2001 allows either error to be returned

 for this case, and does not require these constants to have the same value, so a

 portable application should check for both possibilities.

 EBADF fd is not a valid file descriptor or is not open for writing.

 EDESTADDRREQ

 fd refers to a datagram socket for which a peer address has not been set using con?

 nect(2).

 EDQUOT The user's quota of disk blocks on the filesystem containing the file referred to

 by fd has been exhausted.

 EFAULT buf is outside your accessible address space.

 EFBIG An attempt was made to write a file that exceeds the implementation-defined maximum

 file size or the process's file size limit, or to write at a position past the max?

 imum allowed offset. Page 2/4

 EINTR The call was interrupted by a signal before any data was written; see signal(7).

 EINVAL fd is attached to an object which is unsuitable for writing; or the file was opened

 with the O_DIRECT flag, and either the address specified in buf, the value speci?

 fied in count, or the file offset is not suitably aligned.

 EIO A low-level I/O error occurred while modifying the inode. This error may relate to

 the write-back of data written by an earlier write(), which may have been issued to

 a different file descriptor on the same file. Since Linux 4.13, errors from write-

 back come with a promise that they may be reported by subsequent. write() re?

 quests, and will be reported by a subsequent fsync(2) (whether or not they were

 also reported by write()). An alternate cause of EIO on networked filesystems is

 when an advisory lock had been taken out on the file descriptor and this lock has

 been lost. See the Lost locks section of fcntl(2) for further details.

 ENOSPC The device containing the file referred to by fd has no room for the data.

 EPERM The operation was prevented by a file seal; see fcntl(2).

 EPIPE fd is connected to a pipe or socket whose reading end is closed. When this happens

 the writing process will also receive a SIGPIPE signal. (Thus, the write return

 value is seen only if the program catches, blocks or ignores this signal.)

 Other errors may occur, depending on the object connected to fd.

CONFORMING TO

 SVr4, 4.3BSD, POSIX.1-2001.

 Under SVr4 a write may be interrupted and return EINTR at any point, not just before any

 data is written.

NOTES

 The types size_t and ssize_t are, respectively, unsigned and signed integer data types

 specified by POSIX.1.

 A successful return from write() does not make any guarantee that data has been committed

 to disk. On some filesystems, including NFS, it does not even guarantee that space has

 successfully been reserved for the data. In this case, some errors might be delayed until

 a future write(), fsync(2), or even close(2). The only way to be sure is to call fsync(2)

 after you are done writing all your data.

 If a write() is interrupted by a signal handler before any bytes are written, then the

 call fails with the error EINTR; if it is interrupted after at least one byte has been

 written, the call succeeds, and returns the number of bytes written. Page 3/4

 On Linux, write() (and similar system calls) will transfer at most 0x7ffff000

 (2,147,479,552) bytes, returning the number of bytes actually transferred. (This is true

 on both 32-bit and 64-bit systems.)

 An error return value while performing write() using direct I/O does not mean the entire

 write has failed. Partial data may be written and the data at the file offset on which the

 write() was attempted should be considered inconsistent.

BUGS

 According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions with Regular File

 Operations"):

 All of the following functions shall be atomic with respect to each other in the ef?

 fects specified in POSIX.1-2008 when they operate on regular files or symbolic links:

 ...

 Among the APIs subsequently listed are write() and writev(2). And among the effects that

 should be atomic across threads (and processes) are updates of the file offset. However,

 on Linux before version 3.14, this was not the case: if two processes that share an open

 file description (see open(2)) perform a write() (or writev(2)) at the same time, then the

 I/O operations were not atomic with respect updating the file offset, with the result that

 the blocks of data output by the two processes might (incorrectly) overlap. This problem

 was fixed in Linux 3.14.

SEE ALSO

 close(2), fcntl(2), fsync(2), ioctl(2), lseek(2), open(2), pwrite(2), read(2), select(2),

 writev(2), fwrite(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-10-10 WRITE(2)

Page 4/4

