
Rocky Enterprise Linux 9.2 Manual Pages on command 'vsnprintf.3'

$ man vsnprintf.3

PRINTF(3) Linux Programmer's Manual PRINTF(3)

NAME

 printf, fprintf, dprintf, sprintf, snprintf, vprintf, vfprintf, vdprintf, vsprintf, vs?

 nprintf - formatted output conversion

SYNOPSIS

 #include <stdio.h>

 int printf(const char *format, ...);

 int fprintf(FILE *stream, const char *format, ...);

 int dprintf(int fd, const char *format, ...);

 int sprintf(char *str, const char *format, ...);

 int snprintf(char *str, size_t size, const char *format, ...);

 #include <stdarg.h>

 int vprintf(const char *format, va_list ap);

 int vfprintf(FILE *stream, const char *format, va_list ap);

 int vdprintf(int fd, const char *format, va_list ap);

 int vsprintf(char *str, const char *format, va_list ap);

 int vsnprintf(char *str, size_t size, const char *format, va_list ap);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 snprintf(), vsnprintf():

 _XOPEN_SOURCE >= 500 || _ISOC99_SOURCE ||

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

 dprintf(), vdprintf():

 Since glibc 2.10: Page 1/12

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _GNU_SOURCE

DESCRIPTION

 The functions in the printf() family produce output according to a format as described be?

 low. The functions printf() and vprintf() write output to stdout, the standard output

 stream; fprintf() and vfprintf() write output to the given output stream; sprintf(),

 snprintf(), vsprintf(), and vsnprintf() write to the character string str.

 The function dprintf() is the same as fprintf() except that it outputs to a file descrip?

 tor, fd, instead of to a stdio stream.

 The functions snprintf() and vsnprintf() write at most size bytes (including the terminat?

 ing null byte ('\0')) to str.

 The functions vprintf(), vfprintf(), vdprintf(), vsprintf(), vsnprintf() are equivalent to

 the functions printf(), fprintf(), dprintf(), sprintf(), snprintf(), respectively, except

 that they are called with a va_list instead of a variable number of arguments. These

 functions do not call the va_end macro. Because they invoke the va_arg macro, the value

 of ap is undefined after the call. See stdarg(3).

 All of these functions write the output under the control of a format string that speci?

 fies how subsequent arguments (or arguments accessed via the variable-length argument fa?

 cilities of stdarg(3)) are converted for output.

 C99 and POSIX.1-2001 specify that the results are undefined if a call to sprintf(),

 snprintf(), vsprintf(), or vsnprintf() would cause copying to take place between objects

 that overlap (e.g., if the target string array and one of the supplied input arguments re?

 fer to the same buffer). See NOTES.

 Format of the format string

 The format string is a character string, beginning and ending in its initial shift state,

 if any. The format string is composed of zero or more directives: ordinary characters

 (not %), which are copied unchanged to the output stream; and conversion specifications,

 each of which results in fetching zero or more subsequent arguments. Each conversion

 specification is introduced by the character %, and ends with a conversion specifier. In

 between there may be (in this order) zero or more flags, an optional minimum field width,

 an optional precision and an optional length modifier.

 The arguments must correspond properly (after type promotion) with the conversion speci? Page 2/12

 fier. By default, the arguments are used in the order given, where each '*' (see Field

 width and Precision below) and each conversion specifier asks for the next argument (and

 it is an error if insufficiently many arguments are given). One can also specify explic?

 itly which argument is taken, at each place where an argument is required, by writing

 "%m$" instead of '%' and "*m$" instead of '*', where the decimal integer m denotes the po?

 sition in the argument list of the desired argument, indexed starting from 1. Thus,

 printf("%*d", width, num);

 and

 printf("%2$*1$d", width, num);

 are equivalent. The second style allows repeated references to the same argument. The

 C99 standard does not include the style using '$', which comes from the Single UNIX Speci?

 fication. If the style using '$' is used, it must be used throughout for all conversions

 taking an argument and all width and precision arguments, but it may be mixed with "%%"

 formats, which do not consume an argument. There may be no gaps in the numbers of argu?

 ments specified using '$'; for example, if arguments 1 and 3 are specified, argument 2

 must also be specified somewhere in the format string.

 For some numeric conversions a radix character ("decimal point") or thousands' grouping

 character is used. The actual character used depends on the LC_NUMERIC part of the lo?

 cale. (See setlocale(3).) The POSIX locale uses '.' as radix character, and does not

 have a grouping character. Thus,

 printf("%'.2f", 1234567.89);

 results in "1234567.89" in the POSIX locale, in "1234567,89" in the nl_NL locale, and in

 "1.234.567,89" in the da_DK locale.

 Flag characters

 The character % is followed by zero or more of the following flags:

 # The value should be converted to an "alternate form". For o conversions, the first

 character of the output string is made zero (by prefixing a 0 if it was not zero

 already). For x and X conversions, a nonzero result has the string "0x" (or "0X"

 for X conversions) prepended to it. For a, A, e, E, f, F, g, and G conversions,

 the result will always contain a decimal point, even if no digits follow it (nor?

 mally, a decimal point appears in the results of those conversions only if a digit

 follows). For g and G conversions, trailing zeros are not removed from the result

 as they would otherwise be. For other conversions, the result is undefined. Page 3/12

 0 The value should be zero padded. For d, i, o, u, x, X, a, A, e, E, f, F, g, and G

 conversions, the converted value is padded on the left with zeros rather than

 blanks. If the 0 and - flags both appear, the 0 flag is ignored. If a precision

 is given with a numeric conversion (d, i, o, u, x, and X), the 0 flag is ignored.

 For other conversions, the behavior is undefined.

 - The converted value is to be left adjusted on the field boundary. (The default is

 right justification.) The converted value is padded on the right with blanks,

 rather than on the left with blanks or zeros. A - overrides a 0 if both are given.

 ' ' (a space) A blank should be left before a positive number (or empty string) pro?

 duced by a signed conversion.

 + A sign (+ or -) should always be placed before a number produced by a signed con?

 version. By default, a sign is used only for negative numbers. A + overrides a

 space if both are used.

 The five flag characters above are defined in the C99 standard. The Single UNIX Specifi?

 cation specifies one further flag character.

 ' For decimal conversion (i, d, u, f, F, g, G) the output is to be grouped with thou?

 sands' grouping characters if the locale information indicates any. (See setlo?

 cale(3).) Note that many versions of gcc(1) cannot parse this option and will is?

 sue a warning. (SUSv2 did not include %'F, but SUSv3 added it.)

 glibc 2.2 adds one further flag character.

 I For decimal integer conversion (i, d, u) the output uses the locale's alternative

 output digits, if any. For example, since glibc 2.2.3 this will give Arabic-Indic

 digits in the Persian ("fa_IR") locale.

 Field width

 An optional decimal digit string (with nonzero first digit) specifying a minimum field

 width. If the converted value has fewer characters than the field width, it will be

 padded with spaces on the left (or right, if the left-adjustment flag has been given).

 Instead of a decimal digit string one may write "*" or "*m$" (for some decimal integer m)

 to specify that the field width is given in the next argument, or in the m-th argument,

 respectively, which must be of type int. A negative field width is taken as a '-' flag

 followed by a positive field width. In no case does a nonexistent or small field width

 cause truncation of a field; if the result of a conversion is wider than the field width,

 the field is expanded to contain the conversion result. Page 4/12

 Precision

 An optional precision, in the form of a period ('.') followed by an optional decimal

 digit string. Instead of a decimal digit string one may write "*" or "*m$" (for some dec?

 imal integer m) to specify that the precision is given in the next argument, or in the m-

 th argument, respectively, which must be of type int. If the precision is given as just

 '.', the precision is taken to be zero. A negative precision is taken as if the precision

 were omitted. This gives the minimum number of digits to appear for d, i, o, u, x, and X

 conversions, the number of digits to appear after the radix character for a, A, e, E, f,

 and F conversions, the maximum number of significant digits for g and G conversions, or

 the maximum number of characters to be printed from a string for s and S conversions.

 Length modifier

 Here, "integer conversion" stands for d, i, o, u, x, or X conversion.

 hh A following integer conversion corresponds to a signed char or unsigned char argu?

 ment, or a following n conversion corresponds to a pointer to a signed char argu?

 ment.

 h A following integer conversion corresponds to a short or unsigned short argument,

 or a following n conversion corresponds to a pointer to a short argument.

 l (ell) A following integer conversion corresponds to a long or unsigned long argu?

 ment, or a following n conversion corresponds to a pointer to a long argument, or a

 following c conversion corresponds to a wint_t argument, or a following s conver?

 sion corresponds to a pointer to wchar_t argument.

 ll (ell-ell). A following integer conversion corresponds to a long long or unsigned

 long long argument, or a following n conversion corresponds to a pointer to a long

 long argument.

 q A synonym for ll. This is a nonstandard extension, derived from BSD; avoid its use

 in new code.

 L A following a, A, e, E, f, F, g, or G conversion corresponds to a long double argu?

 ment. (C99 allows %LF, but SUSv2 does not.)

 j A following integer conversion corresponds to an intmax_t or uintmax_t argument, or

 a following n conversion corresponds to a pointer to an intmax_t argument.

 z A following integer conversion corresponds to a size_t or ssize_t argument, or a

 following n conversion corresponds to a pointer to a size_t argument.

 Z A nonstandard synonym for z that predates the appearance of z. Do not use in new Page 5/12

 code.

 t A following integer conversion corresponds to a ptrdiff_t argument, or a following

 n conversion corresponds to a pointer to a ptrdiff_t argument.

 SUSv3 specifies all of the above, except for those modifiers explicitly noted as being

 nonstandard extensions. SUSv2 specified only the length modifiers h (in hd, hi, ho, hx,

 hX, hn) and l (in ld, li, lo, lx, lX, ln, lc, ls) and L (in Le, LE, Lf, Lg, LG).

 As a nonstandard extension, the GNU implementations treats ll and L as synonyms, so that

 one can, for example, write llg (as a synonym for the standards-compliant Lg) and Ld (as a

 synonym for the standards compliant lld). Such usage is nonportable.

 Conversion specifiers

 A character that specifies the type of conversion to be applied. The conversion speci?

 fiers and their meanings are:

 d, i The int argument is converted to signed decimal notation. The precision, if any,

 gives the minimum number of digits that must appear; if the converted value re?

 quires fewer digits, it is padded on the left with zeros. The default precision is

 1. When 0 is printed with an explicit precision 0, the output is empty.

 o, u, x, X

 The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u),

 or unsigned hexadecimal (x and X) notation. The letters abcdef are used for x con?

 versions; the letters ABCDEF are used for X conversions. The precision, if any,

 gives the minimum number of digits that must appear; if the converted value re?

 quires fewer digits, it is padded on the left with zeros. The default precision is

 1. When 0 is printed with an explicit precision 0, the output is empty.

 e, E The double argument is rounded and converted in the style [-]d.ddde?dd where there

 is one digit (which is nonzero if the argument is nonzero) before the decimal-point

 character and the number of digits after it is equal to the precision; if the pre?

 cision is missing, it is taken as 6; if the precision is zero, no decimal-point

 character appears. An E conversion uses the letter E (rather than e) to introduce

 the exponent. The exponent always contains at least two digits; if the value is

 zero, the exponent is 00.

 f, F The double argument is rounded and converted to decimal notation in the style

 [-]ddd.ddd, where the number of digits after the decimal-point character is equal

 to the precision specification. If the precision is missing, it is taken as 6; if Page 6/12

 the precision is explicitly zero, no decimal-point character appears. If a decimal

 point appears, at least one digit appears before it.

 (SUSv2 does not know about F and says that character string representations for in?

 finity and NaN may be made available. SUSv3 adds a specification for F. The C99

 standard specifies "[-]inf" or "[-]infinity" for infinity, and a string starting

 with "nan" for NaN, in the case of f conversion, and "[-]INF" or "[-]INFINITY" or

 "NAN" in the case of F conversion.)

 g, G The double argument is converted in style f or e (or F or E for G conversions).

 The precision specifies the number of significant digits. If the precision is

 missing, 6 digits are given; if the precision is zero, it is treated as 1. Style e

 is used if the exponent from its conversion is less than -4 or greater than or

 equal to the precision. Trailing zeros are removed from the fractional part of the

 result; a decimal point appears only if it is followed by at least one digit.

 a, A (C99; not in SUSv2, but added in SUSv3) For a conversion, the double argument is

 converted to hexadecimal notation (using the letters abcdef) in the style

 [-]0xh.hhhhp?d; for A conversion the prefix 0X, the letters ABCDEF, and the expo?

 nent separator P is used. There is one hexadecimal digit before the decimal point,

 and the number of digits after it is equal to the precision. The default precision

 suffices for an exact representation of the value if an exact representation in

 base 2 exists and otherwise is sufficiently large to distinguish values of type

 double. The digit before the decimal point is unspecified for nonnormalized num?

 bers, and nonzero but otherwise unspecified for normalized numbers. The exponent

 always contains at least one digit; if the value is zero, the exponent is 0.

 c If no l modifier is present, the int argument is converted to an unsigned char, and

 the resulting character is written. If an l modifier is present, the wint_t (wide

 character) argument is converted to a multibyte sequence by a call to the wcr?

 tomb(3) function, with a conversion state starting in the initial state, and the

 resulting multibyte string is written.

 s If no l modifier is present: the const char * argument is expected to be a pointer

 to an array of character type (pointer to a string). Characters from the array are

 written up to (but not including) a terminating null byte ('\0'); if a precision is

 specified, no more than the number specified are written. If a precision is given,

 no null byte need be present; if the precision is not specified, or is greater than Page 7/12

 the size of the array, the array must contain a terminating null byte.

 If an l modifier is present: the const wchar_t * argument is expected to be a

 pointer to an array of wide characters. Wide characters from the array are con?

 verted to multibyte characters (each by a call to the wcrtomb(3) function, with a

 conversion state starting in the initial state before the first wide character), up

 to and including a terminating null wide character. The resulting multibyte char?

 acters are written up to (but not including) the terminating null byte. If a pre?

 cision is specified, no more bytes than the number specified are written, but no

 partial multibyte characters are written. Note that the precision determines the

 number of bytes written, not the number of wide characters or screen positions.

 The array must contain a terminating null wide character, unless a precision is

 given and it is so small that the number of bytes written exceeds it before the end

 of the array is reached.

 C (Not in C99 or C11, but in SUSv2, SUSv3, and SUSv4.) Synonym for lc. Don't use.

 S (Not in C99 or C11, but in SUSv2, SUSv3, and SUSv4.) Synonym for ls. Don't use.

 p The void * pointer argument is printed in hexadecimal (as if by %#x or %#lx).

 n The number of characters written so far is stored into the integer pointed to by

 the corresponding argument. That argument shall be an int *, or variant whose size

 matches the (optionally) supplied integer length modifier. No argument is con?

 verted. (This specifier is not supported by the bionic C library.) The behavior

 is undefined if the conversion specification includes any flags, a field width, or

 a precision.

 m (Glibc extension; supported by uClibc and musl.) Print output of strerror(errno).

 No argument is required.

 % A '%' is written. No argument is converted. The complete conversion specification

 is '%%'.

RETURN VALUE

 Upon successful return, these functions return the number of characters printed (excluding

 the null byte used to end output to strings).

 The functions snprintf() and vsnprintf() do not write more than size bytes (including the

 terminating null byte ('\0')). If the output was truncated due to this limit, then the

 return value is the number of characters (excluding the terminating null byte) which would

 have been written to the final string if enough space had been available. Thus, a return Page 8/12

 value of size or more means that the output was truncated. (See also below under NOTES.)

 If an output error is encountered, a negative value is returned.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?printf(), fprintf(), ? Thread safety ? MT-Safe locale ?

 ?sprintf(), snprintf(), ? ? ?

 ?vprintf(), vfprintf(), ? ? ?

 ?vsprintf(), vsnprintf() ? ? ?

 ???

CONFORMING TO

 fprintf(), printf(), sprintf(), vprintf(), vfprintf(), vsprintf(): POSIX.1-2001,

 POSIX.1-2008, C89, C99.

 snprintf(), vsnprintf(): POSIX.1-2001, POSIX.1-2008, C99.

 The dprintf() and vdprintf() functions were originally GNU extensions that were later

 standardized in POSIX.1-2008.

 Concerning the return value of snprintf(), SUSv2 and C99 contradict each other: when

 snprintf() is called with size=0 then SUSv2 stipulates an unspecified return value less

 than 1, while C99 allows str to be NULL in this case, and gives the return value (as al?

 ways) as the number of characters that would have been written in case the output string

 has been large enough. POSIX.1-2001 and later align their specification of snprintf()

 with C99.

 glibc 2.1 adds length modifiers hh, j, t, and z and conversion characters a and A.

 glibc 2.2 adds the conversion character F with C99 semantics, and the flag character I.

NOTES

 Some programs imprudently rely on code such as the following

 sprintf(buf, "%s some further text", buf);

 to append text to buf. However, the standards explicitly note that the results are unde?

 fined if source and destination buffers overlap when calling sprintf(), snprintf(),

 vsprintf(), and vsnprintf(). Depending on the version of gcc(1) used, and the compiler

 options employed, calls such as the above will not produce the expected results. Page 9/12

 The glibc implementation of the functions snprintf() and vsnprintf() conforms to the C99

 standard, that is, behaves as described above, since glibc version 2.1. Until glibc

 2.0.6, they would return -1 when the output was truncated.

BUGS

 Because sprintf() and vsprintf() assume an arbitrarily long string, callers must be care?

 ful not to overflow the actual space; this is often impossible to assure. Note that the

 length of the strings produced is locale-dependent and difficult to predict. Use

 snprintf() and vsnprintf() instead (or asprintf(3) and vasprintf(3)).

 Code such as printf(foo); often indicates a bug, since foo may contain a % character. If

 foo comes from untrusted user input, it may contain %n, causing the printf() call to write

 to memory and creating a security hole.

EXAMPLES

 To print Pi to five decimal places:

 #include <math.h>

 #include <stdio.h>

 fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

 To print a date and time in the form "Sunday, July 3, 10:02", where weekday and month are

 pointers to strings:

 #include <stdio.h>

 fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

 weekday, month, day, hour, min);

 Many countries use the day-month-year order. Hence, an internationalized version must be

 able to print the arguments in an order specified by the format:

 #include <stdio.h>

 fprintf(stdout, format,

 weekday, month, day, hour, min);

 where format depends on locale, and may permute the arguments. With the value:

 "%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

 one might obtain "Sonntag, 3. Juli, 10:02".

 To allocate a sufficiently large string and print into it (code correct for both glibc 2.0

 and glibc 2.1):

 #include <stdio.h>

 #include <stdlib.h> Page 10/12

 #include <stdarg.h>

 char *

 make_message(const char *fmt, ...)

 {

 int n = 0;

 size_t size = 0;

 char *p = NULL;

 va_list ap;

 /* Determine required size */

 va_start(ap, fmt);

 n = vsnprintf(p, size, fmt, ap);

 va_end(ap);

 if (n < 0)

 return NULL;

 /* One extra byte for '\0' */

 size = (size_t) n + 1;

 p = malloc(size);

 if (p == NULL)

 return NULL;

 va_start(ap, fmt);

 n = vsnprintf(p, size, fmt, ap);

 va_end(ap);

 if (n < 0) {

 free(p);

 return NULL;

 }

 return p;

 }

 If truncation occurs in glibc versions prior to 2.0.6, this is treated as an error instead

 of being handled gracefully.

SEE ALSO

 printf(1), asprintf(3), puts(3), scanf(3), setlocale(3), strfromd(3), wcrtomb(3),

 wprintf(3), locale(5) Page 11/12

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 PRINTF(3)

Page 12/12

