
Rocky Enterprise Linux 9.2 Manual Pages on command 'va_arg.3'

$ man va_arg.3

STDARG(3) Linux Programmer's Manual STDARG(3)

NAME

 stdarg, va_start, va_arg, va_end, va_copy - variable argument lists

SYNOPSIS

 #include <stdarg.h>

 void va_start(va_list ap, last);

 type va_arg(va_list ap, type);

 void va_end(va_list ap);

 void va_copy(va_list dest, va_list src);

DESCRIPTION

 A function may be called with a varying number of arguments of varying types. The include

 file <stdarg.h> declares a type va_list and defines three macros for stepping through a

 list of arguments whose number and types are not known to the called function.

 The called function must declare an object of type va_list which is used by the macros

 va_start(), va_arg(), and va_end().

 va_start()

 The va_start() macro initializes ap for subsequent use by va_arg() and va_end(), and must

 be called first.

 The argument last is the name of the last argument before the variable argument list, that

 is, the last argument of which the calling function knows the type.

 Because the address of this argument may be used in the va_start() macro, it should not be

 declared as a register variable, or as a function or an array type.

 va_arg() Page 1/5

 The va_arg() macro expands to an expression that has the type and value of the next argu?

 ment in the call. The argument ap is the va_list ap initialized by va_start(). Each call

 to va_arg() modifies ap so that the next call returns the next argument. The argument

 type is a type name specified so that the type of a pointer to an object that has the

 specified type can be obtained simply by adding a * to type.

 The first use of the va_arg() macro after that of the va_start() macro returns the argu?

 ment after last. Successive invocations return the values of the remaining arguments.

 If there is no next argument, or if type is not compatible with the type of the actual

 next argument (as promoted according to the default argument promotions), random errors

 will occur.

 If ap is passed to a function that uses va_arg(ap,type), then the value of ap is undefined

 after the return of that function.

 va_end()

 Each invocation of va_start() must be matched by a corresponding invocation of va_end() in

 the same function. After the call va_end(ap) the variable ap is undefined. Multiple tra?

 versals of the list, each bracketed by va_start() and va_end() are possible. va_end() may

 be a macro or a function.

 va_copy()

 The va_copy() macro copies the (previously initialized) variable argument list src to

 dest. The behavior is as if va_start() were applied to dest with the same last argument,

 followed by the same number of va_arg() invocations that was used to reach the current

 state of src.

 An obvious implementation would have a va_list be a pointer to the stack frame of the

 variadic function. In such a setup (by far the most common) there seems nothing against

 an assignment

 va_list aq = ap;

 Unfortunately, there are also systems that make it an array of pointers (of length 1), and

 there one needs

 va_list aq;

 *aq = *ap;

 Finally, on systems where arguments are passed in registers, it may be necessary for

 va_start() to allocate memory, store the arguments there, and also an indication of which

 argument is next, so that va_arg() can step through the list. Now va_end() can free the Page 2/5

 allocated memory again. To accommodate this situation, C99 adds a macro va_copy(), so

 that the above assignment can be replaced by

 va_list aq;

 va_copy(aq, ap);

 ...

 va_end(aq);

 Each invocation of va_copy() must be matched by a corresponding invocation of va_end() in

 the same function. Some systems that do not supply va_copy() have __va_copy instead,

 since that was the name used in the draft proposal.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?va_start(), va_end(), ? Thread safety ? MT-Safe ?

 ?va_copy() ? ? ?

 ??

 ?va_arg() ? Thread safety ? MT-Safe race:ap ?

 ??

CONFORMING TO

 The va_start(), va_arg(), and va_end() macros conform to C89. C99 defines the va_copy()

 macro.

BUGS

 Unlike the historical varargs macros, the stdarg macros do not permit programmers to code

 a function with no fixed arguments. This problem generates work mainly when converting

 varargs code to stdarg code, but it also creates difficulties for variadic functions that

 wish to pass all of their arguments on to a function that takes a va_list argument, such

 as vfprintf(3).

EXAMPLES

 The function foo takes a string of format characters and prints out the argument associ?

 ated with each format character based on the type.

 #include <stdio.h>

 #include <stdarg.h> Page 3/5

 void

 foo(char *fmt, ...) /* '...' is C syntax for a variadic function */

 {

 va_list ap;

 int d;

 char c;

 char *s;

 va_start(ap, fmt);

 while (*fmt)

 switch (*fmt++) {

 case 's': /* string */

 s = va_arg(ap, char *);

 printf("string %s\n", s);

 break;

 case 'd': /* int */

 d = va_arg(ap, int);

 printf("int %d\n", d);

 break;

 case 'c': /* char */

 /* need a cast here since va_arg only

 takes fully promoted types */

 c = (char) va_arg(ap, int);

 printf("char %c\n", c);

 break;

 }

 va_end(ap);

 }

SEE ALSO

 vprintf(3), vscanf(3), vsyslog(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/. Page 4/5

 2020-11-01 STDARG(3)

Page 5/5

