
Rocky Enterprise Linux 9.2 Manual Pages on command 'utf-8.7'

$ man utf-8.7

UTF-8(7) Linux Programmer's Manual UTF-8(7)

NAME

 UTF-8 - an ASCII compatible multibyte Unicode encoding

DESCRIPTION

 The Unicode 3.0 character set occupies a 16-bit code space. The most obvious Unicode en?

 coding (known as UCS-2) consists of a sequence of 16-bit words. Such strings can contain?

 as part of many 16-bit characters?bytes such as '\0' or '/', which have a special meaning

 in filenames and other C library function arguments. In addition, the majority of UNIX

 tools expect ASCII files and can't read 16-bit words as characters without major modifica?

 tions. For these reasons, UCS-2 is not a suitable external encoding of Unicode in file?

 names, text files, environment variables, and so on. The ISO 10646 Universal Character

 Set (UCS), a superset of Unicode, occupies an even larger code space?31 bits?and the obvi?

 ous UCS-4 encoding for it (a sequence of 32-bit words) has the same problems.

 The UTF-8 encoding of Unicode and UCS does not have these problems and is the common way

 in which Unicode is used on UNIX-style operating systems.

 Properties

 The UTF-8 encoding has the following nice properties:

 * UCS characters 0x00000000 to 0x0000007f (the classic US-ASCII characters) are encoded

 simply as bytes 0x00 to 0x7f (ASCII compatibility). This means that files and strings

 which contain only 7-bit ASCII characters have the same encoding under both ASCII and

 UTF-8 .

 * All UCS characters greater than 0x7f are encoded as a multibyte sequence consisting only

 of bytes in the range 0x80 to 0xfd, so no ASCII byte can appear as part of another char? Page 1/4

 acter and there are no problems with, for example, '\0' or '/'.

 * The lexicographic sorting order of UCS-4 strings is preserved.

 * All possible 2^31 UCS codes can be encoded using UTF-8.

 * The bytes 0xc0, 0xc1, 0xfe, and 0xff are never used in the UTF-8 encoding.

 * The first byte of a multibyte sequence which represents a single non-ASCII UCS character

 is always in the range 0xc2 to 0xfd and indicates how long this multibyte sequence is.

 All further bytes in a multibyte sequence are in the range 0x80 to 0xbf. This allows

 easy resynchronization and makes the encoding stateless and robust against missing

 bytes.

 * UTF-8 encoded UCS characters may be up to six bytes long, however the Unicode standard

 specifies no characters above 0x10ffff, so Unicode characters can be only up to four

 bytes long in UTF-8.

 Encoding

 The following byte sequences are used to represent a character. The sequence to be used

 depends on the UCS code number of the character:

 0x00000000 - 0x0000007F:

 0xxxxxxx

 0x00000080 - 0x000007FF:

 110xxxxx 10xxxxxx

 0x00000800 - 0x0000FFFF:

 1110xxxx 10xxxxxx 10xxxxxx

 0x00010000 - 0x001FFFFF:

 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

 0x00200000 - 0x03FFFFFF:

 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

 0x04000000 - 0x7FFFFFFF:

 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

 The xxx bit positions are filled with the bits of the character code number in binary rep?

 resentation, most significant bit first (big-endian). Only the shortest possible multi?

 byte sequence which can represent the code number of the character can be used.

 The UCS code values 0xd800?0xdfff (UTF-16 surrogates) as well as 0xfffe and 0xffff (UCS

 noncharacters) should not appear in conforming UTF-8 streams. According to RFC 3629 no

 point above U+10FFFF should be used, which limits characters to four bytes. Page 2/4

 Example

 The Unicode character 0xa9 = 1010 1001 (the copyright sign) is encoded in UTF-8 as

 11000010 10101001 = 0xc2 0xa9

 and character 0x2260 = 0010 0010 0110 0000 (the "not equal" symbol) is encoded as:

 11100010 10001001 10100000 = 0xe2 0x89 0xa0

 Application notes

 Users have to select a UTF-8 locale, for example with

 export LANG=en_GB.UTF-8

 in order to activate the UTF-8 support in applications.

 Application software that has to be aware of the used character encoding should always set

 the locale with for example

 setlocale(LC_CTYPE, "")

 and programmers can then test the expression

 strcmp(nl_langinfo(CODESET), "UTF-8") == 0

 to determine whether a UTF-8 locale has been selected and whether therefore all plaintext

 standard input and output, terminal communication, plaintext file content, filenames and

 environment variables are encoded in UTF-8.

 Programmers accustomed to single-byte encodings such as US-ASCII or ISO 8859 have to be

 aware that two assumptions made so far are no longer valid in UTF-8 locales. Firstly, a

 single byte does not necessarily correspond any more to a single character. Secondly,

 since modern terminal emulators in UTF-8 mode also support Chinese, Japanese, and Korean

 double-width characters as well as nonspacing combining characters, outputting a single

 character does not necessarily advance the cursor by one position as it did in ASCII. Li?

 brary functions such as mbsrtowcs(3) and wcswidth(3) should be used today to count charac?

 ters and cursor positions.

 The official ESC sequence to switch from an ISO 2022 encoding scheme (as used for instance

 by VT100 terminals) to UTF-8 is ESC % G ("\x1b%G"). The corresponding return sequence

 from UTF-8 to ISO 2022 is ESC % @ ("\x1b%@"). Other ISO 2022 sequences (such as for

 switching the G0 and G1 sets) are not applicable in UTF-8 mode.

 Security

 The Unicode and UCS standards require that producers of UTF-8 shall use the shortest form

 possible, for example, producing a two-byte sequence with first byte 0xc0 is nonconform?

 ing. Unicode 3.1 has added the requirement that conforming programs must not accept non- Page 3/4

 shortest forms in their input. This is for security reasons: if user input is checked for

 possible security violations, a program might check only for the ASCII version of "/../"

 or ";" or NUL and overlook that there are many non-ASCII ways to represent these things in

 a non-shortest UTF-8 encoding.

 Standards

 ISO/IEC 10646-1:2000, Unicode 3.1, RFC 3629, Plan 9.

SEE ALSO

 locale(1), nl_langinfo(3), setlocale(3), charsets(7), unicode(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2019-03-06 UTF-8(7)

Page 4/4

