
Rocky Enterprise Linux 9.2 Manual Pages on command 'unzip.1'

$ man unzip.1

UNZIP(1) General Commands Manual UNZIP(1)

NAME

 unzip - list, test and extract compressed files in a ZIP archive

SYNOPSIS

 unzip [-Z] [-cflptTuvz[abjnoqsCDKLMUVWX$/:^]] file[.zip] [file(s) ...] [-x xfile(s) ...]

 [-d exdir]

DESCRIPTION

 unzip will list, test, or extract files from a ZIP archive, commonly found on MS-DOS sys?

 tems. The default behavior (with no options) is to extract into the current directory

 (and subdirectories below it) all files from the specified ZIP archive. A companion pro?

 gram, zip(1), creates ZIP archives; both programs are compatible with archives created by

 PKWARE's PKZIP and PKUNZIP for MS-DOS, but in many cases the program options or default

 behaviors differ.

ARGUMENTS

 file[.zip]

 Path of the ZIP archive(s). If the file specification is a wildcard, each matching

 file is processed in an order determined by the operating system (or file system).

 Only the filename can be a wildcard; the path itself cannot. Wildcard expressions

 are similar to those supported in commonly used Unix shells (sh, ksh, csh) and may

 contain:

 * matches a sequence of 0 or more characters

 ? matches exactly 1 character

 [...] matches any single character found inside the brackets; ranges are specified Page 1/20

 by a beginning character, a hyphen, and an ending character. If an exclama?

 tion point or a caret (`!' or `^') follows the left bracket, then the range

 of characters within the brackets is complemented (that is, anything except

 the characters inside the brackets is considered a match). To specify a

 verbatim left bracket, the three-character sequence ``[[]'' has to be used.

 (Be sure to quote any character that might otherwise be interpreted or modified by

 the operating system, particularly under Unix and VMS.) If no matches are found,

 the specification is assumed to be a literal filename; and if that also fails, the

 suffix .zip is appended. Note that self-extracting ZIP files are supported, as

 with any other ZIP archive; just specify the .exe suffix (if any) explicitly.

 [file(s)]

 An optional list of archive members to be processed, separated by spaces. (VMS

 versions compiled with VMSCLI defined must delimit files with commas instead. See

 -v in OPTIONS below.) Regular expressions (wildcards) may be used to match multi?

 ple members; see above. Again, be sure to quote expressions that would otherwise

 be expanded or modified by the operating system.

 [-x xfile(s)]

 An optional list of archive members to be excluded from processing. Since wildcard

 characters normally match (`/') directory separators (for exceptions see the option

 -W), this option may be used to exclude any files that are in subdirectories. For

 example, ``unzip foo *.[ch] -x */*'' would extract all C source files in the main

 directory, but none in any subdirectories. Without the -x option, all C source

 files in all directories within the zipfile would be extracted.

 [-d exdir]

 An optional directory to which to extract files. By default, all files and subdi?

 rectories are recreated in the current directory; the -d option allows extraction

 in an arbitrary directory (always assuming one has permission to write to the di?

 rectory). This option need not appear at the end of the command line; it is also

 accepted before the zipfile specification (with the normal options), immediately

 after the zipfile specification, or between the file(s) and the -x option. The op?

 tion and directory may be concatenated without any white space between them, but

 note that this may cause normal shell behavior to be suppressed. In particular,

 ``-d ~'' (tilde) is expanded by Unix C shells into the name of the user's home di? Page 2/20

 rectory, but ``-d~'' is treated as a literal subdirectory ``~'' of the current di?

 rectory.

OPTIONS

 Note that, in order to support obsolescent hardware, unzip's usage screen is limited to 22

 or 23 lines and should therefore be considered only a reminder of the basic unzip syntax

 rather than an exhaustive list of all possible flags. The exhaustive list follows:

 -Z zipinfo(1) mode. If the first option on the command line is -Z, the remaining op?

 tions are taken to be zipinfo(1) options. See the appropriate manual page for a

 description of these options.

 -A [OS/2, Unix DLL] print extended help for the DLL's programming interface (API).

 -c extract files to stdout/screen (``CRT''). This option is similar to the -p option

 except that the name of each file is printed as it is extracted, the -a option is

 allowed, and ASCII-EBCDIC conversion is automatically performed if appropriate.

 This option is not listed in the unzip usage screen.

 -f freshen existing files, i.e., extract only those files that already exist on disk

 and that are newer than the disk copies. By default unzip queries before overwrit?

 ing, but the -o option may be used to suppress the queries. Note that under many

 operating systems, the TZ (timezone) environment variable must be set correctly in

 order for -f and -u to work properly (under Unix the variable is usually set auto?

 matically). The reasons for this are somewhat subtle but have to do with the dif?

 ferences between DOS-format file times (always local time) and Unix-format times

 (always in GMT/UTC) and the necessity to compare the two. A typical TZ value is

 ``PST8PDT'' (US Pacific time with automatic adjustment for Daylight Savings Time or

 ``summer time'').

 -l list archive files (short format). The names, uncompressed file sizes and modifi?

 cation dates and times of the specified files are printed, along with totals for

 all files specified. If UnZip was compiled with OS2_EAS defined, the -l option

 also lists columns for the sizes of stored OS/2 extended attributes (EAs) and OS/2

 access control lists (ACLs). In addition, the zipfile comment and individual file

 comments (if any) are displayed. If a file was archived from a single-case file

 system (for example, the old MS-DOS FAT file system) and the -L option was given,

 the filename is converted to lowercase and is prefixed with a caret (^).

 -p extract files to pipe (stdout). Nothing but the file data is sent to stdout, and Page 3/20

 the files are always extracted in binary format, just as they are stored (no con?

 versions).

 -t test archive files. This option extracts each specified file in memory and com?

 pares the CRC (cyclic redundancy check, an enhanced checksum) of the expanded file

 with the original file's stored CRC value.

 -T [most OSes] set the timestamp on the archive(s) to that of the newest file in each

 one. This corresponds to zip's -go option except that it can be used on wildcard

 zipfiles (e.g., ``unzip -T *.zip'') and is much faster.

 -u update existing files and create new ones if needed. This option performs the same

 function as the -f option, extracting (with query) files that are newer than those

 with the same name on disk, and in addition it extracts those files that do not al?

 ready exist on disk. See -f above for information on setting the timezone prop?

 erly.

 -v list archive files (verbose format) or show diagnostic version info. This option

 has evolved and now behaves as both an option and a modifier. As an option it has

 two purposes: when a zipfile is specified with no other options, -v lists archive

 files verbosely, adding to the basic -l info the compression method, compressed

 size, compression ratio and 32-bit CRC. In contrast to most of the competing util?

 ities, unzip removes the 12 additional header bytes of encrypted entries from the

 compressed size numbers. Therefore, compressed size and compression ratio figures

 are independent of the entry's encryption status and show the correct compression

 performance. (The complete size of the encrypted compressed data stream for zip?

 file entries is reported by the more verbose zipinfo(1) reports, see the separate

 manual.) When no zipfile is specified (that is, the complete command is simply

 ``unzip -v''), a diagnostic screen is printed. In addition to the normal header

 with release date and version, unzip lists the home Info-ZIP ftp site and where to

 find a list of other ftp and non-ftp sites; the target operating system for which

 it was compiled, as well as (possibly) the hardware on which it was compiled, the

 compiler and version used, and the compilation date; any special compilation op?

 tions that might affect the program's operation (see also DECRYPTION below); and

 any options stored in environment variables that might do the same (see ENVIRONMENT

 OPTIONS below). As a modifier it works in conjunction with other options (e.g.,

 -t) to produce more verbose or debugging output; this is not yet fully implemented Page 4/20

 but will be in future releases.

 -z display only the archive comment.

MODIFIERS

 -a convert text files. Ordinarily all files are extracted exactly as they are stored

 (as ``binary'' files). The -a option causes files identified by zip as text files

 (those with the `t' label in zipinfo listings, rather than `b') to be automatically

 extracted as such, converting line endings, end-of-file characters and the charac?

 ter set itself as necessary. (For example, Unix files use line feeds (LFs) for

 end-of-line (EOL) and have no end-of-file (EOF) marker; Macintoshes use carriage

 returns (CRs) for EOLs; and most PC operating systems use CR+LF for EOLs and con?

 trol-Z for EOF. In addition, IBM mainframes and the Michigan Terminal System use

 EBCDIC rather than the more common ASCII character set, and NT supports Unicode.)

 Note that zip's identification of text files is by no means perfect; some ``text''

 files may actually be binary and vice versa. unzip therefore prints ``[text]'' or

 ``[binary]'' as a visual check for each file it extracts when using the -a option.

 The -aa option forces all files to be extracted as text, regardless of the supposed

 file type. On VMS, see also -S.

 -b [general] treat all files as binary (no text conversions). This is a shortcut for

 ---a.

 -b [Tandem] force the creation files with filecode type 180 ('C') when extracting Zip

 entries marked as "text". (On Tandem, -a is enabled by default, see above).

 -b [VMS] auto-convert binary files (see -a above) to fixed-length, 512-byte record

 format. Doubling the option (-bb) forces all files to be extracted in this format.

 When extracting to standard output (-c or -p option in effect), the default conver?

 sion of text record delimiters is disabled for binary (-b) resp. all (-bb) files.

 -B [when compiled with UNIXBACKUP defined] save a backup copy of each overwritten

 file. The backup file is gets the name of the target file with a tilde and option?

 ally a unique sequence number (up to 5 digits) appended. The sequence number is

 applied whenever another file with the original name plus tilde already exists.

 When used together with the "overwrite all" option -o, numbered backup files are

 never created. In this case, all backup files are named as the original file with

 an appended tilde, existing backup files are deleted without notice. This feature

 works similarly to the default behavior of emacs(1) in many locations. Page 5/20

 Example: the old copy of ``foo'' is renamed to ``foo~''.

 Warning: Users should be aware that the -B option does not prevent loss of existing

 data under all circumstances. For example, when unzip is run in overwrite-all

 mode, an existing ``foo~'' file is deleted before unzip attempts to rename ``foo''

 to ``foo~''. When this rename attempt fails (because of a file locks, insufficient

 privileges, or ...), the extraction of ``foo~'' gets cancelled, but the old backup

 file is already lost. A similar scenario takes place when the sequence number

 range for numbered backup files gets exhausted (99999, or 65535 for 16-bit sys?

 tems). In this case, the backup file with the maximum sequence number is deleted

 and replaced by the new backup version without notice.

 -C use case-insensitive matching for the selection of archive entries from the com?

 mand-line list of extract selection patterns. unzip's philosophy is ``you get what

 you ask for'' (this is also responsible for the -L/-U change; see the relevant op?

 tions below). Because some file systems are fully case-sensitive (notably those

 under the Unix operating system) and because both ZIP archives and unzip itself are

 portable across platforms, unzip's default behavior is to match both wildcard and

 literal filenames case-sensitively. That is, specifying ``makefile'' on the com?

 mand line will only match ``makefile'' in the archive, not ``Makefile'' or ``MAKE?

 FILE'' (and similarly for wildcard specifications). Since this does not correspond

 to the behavior of many other operating/file systems (for example, OS/2 HPFS, which

 preserves mixed case but is not sensitive to it), the -C option may be used to

 force all filename matches to be case-insensitive. In the example above, all three

 files would then match ``makefile'' (or ``make*'', or similar). The -C option af?

 fects file specs in both the normal file list and the excluded-file list (xlist).

 Please note that the -C option does neither affect the search for the zipfile(s)

 nor the matching of archive entries to existing files on the extraction path. On a

 case-sensitive file system, unzip will never try to overwrite a file ``FOO'' when

 extracting an entry ``foo''!

 -D skip restoration of timestamps for extracted items. Normally, unzip tries to re?

 store all meta-information for extracted items that are supplied in the Zip archive

 (and do not require privileges or impose a security risk). By specifying -D, unzip

 is told to suppress restoration of timestamps for directories explicitly created

 from Zip archive entries. This option only applies to ports that support setting Page 6/20

 timestamps for directories (currently ATheOS, BeOS, MacOS, OS/2, Unix, VMS, Win32,

 for other unzip ports, -D has no effect). The duplicated option -DD forces sup?

 pression of timestamp restoration for all extracted entries (files and directo?

 ries). This option results in setting the timestamps for all extracted entries to

 the current time.

 On VMS, the default setting for this option is -D for consistency with the behav?

 iour of BACKUP: file timestamps are restored, timestamps of extracted directories

 are left at the current time. To enable restoration of directory timestamps, the

 negated option --D should be specified. On VMS, the option -D disables timestamp

 restoration for all extracted Zip archive items. (Here, a single -D on the command

 line combines with the default -D to do what an explicit -DD does on other sys?

 tems.)

 -E [MacOS only] display contents of MacOS extra field during restore operation.

 -F [Acorn only] suppress removal of NFS filetype extension from stored filenames.

 -F [non-Acorn systems supporting long filenames with embedded commas, and only if com?

 piled with ACORN_FTYPE_NFS defined] translate filetype information from ACORN RISC

 OS extra field blocks into a NFS filetype extension and append it to the names of

 the extracted files. (When the stored filename appears to already have an appended

 NFS filetype extension, it is replaced by the info from the extra field.)

 -i [MacOS only] ignore filenames stored in MacOS extra fields. Instead, the most com?

 patible filename stored in the generic part of the entry's header is used.

 -j junk paths. The archive's directory structure is not recreated; all files are de?

 posited in the extraction directory (by default, the current one).

 -J [BeOS only] junk file attributes. The file's BeOS file attributes are not re?

 stored, just the file's data.

 -J [MacOS only] ignore MacOS extra fields. All Macintosh specific info is skipped.

 Data-fork and resource-fork are restored as separate files.

 -K [AtheOS, BeOS, Unix only] retain SUID/SGID/Tacky file attributes. Without this

 flag, these attribute bits are cleared for security reasons.

 -L convert to lowercase any filename originating on an uppercase-only operating system

 or file system. (This was unzip's default behavior in releases prior to 5.11; the

 new default behavior is identical to the old behavior with the -U option, which is

 now obsolete and will be removed in a future release.) Depending on the archiver, Page 7/20

 files archived under single-case file systems (VMS, old MS-DOS FAT, etc.) may be

 stored as all-uppercase names; this can be ugly or inconvenient when extracting to

 a case-preserving file system such as OS/2 HPFS or a case-sensitive one such as un?

 der Unix. By default unzip lists and extracts such filenames exactly as they're

 stored (excepting truncation, conversion of unsupported characters, etc.); this op?

 tion causes the names of all files from certain systems to be converted to lower?

 case. The -LL option forces conversion of every filename to lowercase, regardless

 of the originating file system.

 -M pipe all output through an internal pager similar to the Unix more(1) command. At

 the end of a screenful of output, unzip pauses with a ``--More--'' prompt; the next

 screenful may be viewed by pressing the Enter (Return) key or the space bar. unzip

 can be terminated by pressing the ``q'' key and, on some systems, the Enter/Return

 key. Unlike Unix more(1), there is no forward-searching or editing capability.

 Also, unzip doesn't notice if long lines wrap at the edge of the screen, effec?

 tively resulting in the printing of two or more lines and the likelihood that some

 text will scroll off the top of the screen before being viewed. On some systems

 the number of available lines on the screen is not detected, in which case unzip

 assumes the height is 24 lines.

 -n never overwrite existing files. If a file already exists, skip the extraction of

 that file without prompting. By default unzip queries before extracting any file

 that already exists; the user may choose to overwrite only the current file, over?

 write all files, skip extraction of the current file, skip extraction of all exist?

 ing files, or rename the current file.

 -N [Amiga] extract file comments as Amiga filenotes. File comments are created with

 the -c option of zip(1), or with the -N option of the Amiga port of zip(1), which

 stores filenotes as comments.

 -o overwrite existing files without prompting. This is a dangerous option, so use it

 with care. (It is often used with -f, however, and is the only way to overwrite

 directory EAs under OS/2.)

 -P password

 use password to decrypt encrypted zipfile entries (if any). THIS IS INSECURE!

 Many multi-user operating systems provide ways for any user to see the current com?

 mand line of any other user; even on stand-alone systems there is always the threat Page 8/20

 of over-the-shoulder peeking. Storing the plaintext password as part of a command

 line in an automated script is even worse. Whenever possible, use the non-echoing,

 interactive prompt to enter passwords. (And where security is truly important, use

 strong encryption such as Pretty Good Privacy instead of the relatively weak en?

 cryption provided by standard zipfile utilities.)

 -q perform operations quietly (-qq = even quieter). Ordinarily unzip prints the names

 of the files it's extracting or testing, the extraction methods, any file or zip?

 file comments that may be stored in the archive, and possibly a summary when fin?

 ished with each archive. The -q[q] options suppress the printing of some or all of

 these messages.

 -s [OS/2, NT, MS-DOS] convert spaces in filenames to underscores. Since all PC oper?

 ating systems allow spaces in filenames, unzip by default extracts filenames with

 spaces intact (e.g., ``EA DATA. SF''). This can be awkward, however, since MS-DOS

 in particular does not gracefully support spaces in filenames. Conversion of spa?

 ces to underscores can eliminate the awkwardness in some cases.

 -S [VMS] convert text files (-a, -aa) into Stream_LF record format, instead of the

 text-file default, variable-length record format. (Stream_LF is the default record

 format of VMS unzip. It is applied unless conversion (-a, -aa and/or -b, -bb) is

 requested or a VMS-specific entry is processed.)

 -U [UNICODE_SUPPORT only] modify or disable UTF-8 handling. When UNICODE_SUPPORT is

 available, the option -U forces unzip to escape all non-ASCII characters from UTF-8

 coded filenames as ``#Uxxxx'' (for UCS-2 characters, or ``#Lxxxxxx'' for unicode

 codepoints needing 3 octets). This option is mainly provided for debugging purpose

 when the fairly new UTF-8 support is suspected to mangle up extracted filenames.

 The option -UU allows to entirely disable the recognition of UTF-8 encoded file?

 names. The handling of filename codings within unzip falls back to the behaviour

 of previous versions.

 [old, obsolete usage] leave filenames uppercase if created under MS-DOS, VMS, etc.

 See -L above.

 -V retain (VMS) file version numbers. VMS files can be stored with a version number,

 in the format file.ext;##. By default the ``;##'' version numbers are stripped,

 but this option allows them to be retained. (On file systems that limit filenames

 to particularly short lengths, the version numbers may be truncated or stripped re? Page 9/20

 gardless of this option.)

 -W [only when WILD_STOP_AT_DIR compile-time option enabled] modifies the pattern

 matching routine so that both `?' (single-char wildcard) and `*' (multi-char wild?

 card) do not match the directory separator character `/'. (The two-character se?

 quence ``**'' acts as a multi-char wildcard that includes the directory separator

 in its matched characters.) Examples:

 "*.c" matches "foo.c" but not "mydir/foo.c"

 "**.c" matches both "foo.c" and "mydir/foo.c"

 "*/*.c" matches "bar/foo.c" but not "baz/bar/foo.c"

 "??*/*" matches "ab/foo" and "abc/foo"

 but not "a/foo" or "a/b/foo"

 This modified behaviour is equivalent to the pattern matching style used by the

 shells of some of UnZip's supported target OSs (one example is Acorn RISC OS).

 This option may not be available on systems where the Zip archive's internal direc?

 tory separator character `/' is allowed as regular character in native operating

 system filenames. (Currently, UnZip uses the same pattern matching rules for both

 wildcard zipfile specifications and zip entry selection patterns in most ports.

 For systems allowing `/' as regular filename character, the -W option would not

 work as expected on a wildcard zipfile specification.)

 -X [VMS, Unix, OS/2, NT, Tandem] restore owner/protection info (UICs and ACL entries)

 under VMS, or user and group info (UID/GID) under Unix, or access control lists

 (ACLs) under certain network-enabled versions of OS/2 (Warp Server with IBM LAN

 Server/Requester 3.0 to 5.0; Warp Connect with IBM Peer 1.0), or security ACLs un?

 der Windows NT. In most cases this will require special system privileges, and

 doubling the option (-XX) under NT instructs unzip to use privileges for extrac?

 tion; but under Unix, for example, a user who belongs to several groups can restore

 files owned by any of those groups, as long as the user IDs match his or her own.

 Note that ordinary file attributes are always restored--this option applies only to

 optional, extra ownership info available on some operating systems. [NT's access

 control lists do not appear to be especially compatible with OS/2's, so no attempt

 is made at cross-platform portability of access privileges. It is not clear under

 what conditions this would ever be useful anyway.]

 -Y [VMS] treat archived file name endings of ``.nnn'' (where ``nnn'' is a decimal Page 10/20

 number) as if they were VMS version numbers (``;nnn''). (The default is to treat

 them as file types.) Example:

 "a.b.3" -> "a.b;3".

 -$ [MS-DOS, OS/2, NT] restore the volume label if the extraction medium is removable

 (e.g., a diskette). Doubling the option (-$$) allows fixed media (hard disks) to

 be labelled as well. By default, volume labels are ignored.

 -/ extensions

 [Acorn only] overrides the extension list supplied by Unzip$Ext environment vari?

 able. During extraction, filename extensions that match one of the items in this

 extension list are swapped in front of the base name of the extracted file.

 -: [all but Acorn, VM/CMS, MVS, Tandem] allows to extract archive members into loca?

 tions outside of the current `` extraction root folder''. For security reasons, un?

 zip normally removes ``parent dir'' path components (``../'') from the names of ex?

 tracted file. This safety feature (new for version 5.50) prevents unzip from acci?

 dentally writing files to ``sensitive'' areas outside the active extraction folder

 tree head. The -: option lets unzip switch back to its previous, more liberal be?

 haviour, to allow exact extraction of (older) archives that used ``../'' components

 to create multiple directory trees at the level of the current extraction folder.

 This option does not enable writing explicitly to the root directory (``/''). To

 achieve this, it is necessary to set the extraction target folder to root (e.g. -d

 /). However, when the -: option is specified, it is still possible to implicitly

 write to the root directory by specifying enough ``../'' path components within the

 zip archive. Use this option with extreme caution.

 -^ [Unix only] allow control characters in names of extracted ZIP archive entries. On

 Unix, a file name may contain any (8-bit) character code with the two exception '/'

 (directory delimiter) and NUL (0x00, the C string termination indicator), unless

 the specific file system has more restrictive conventions. Generally, this allows

 to embed ASCII control characters (or even sophisticated control sequences) in file

 names, at least on 'native' Unix file systems. However, it may be highly suspi?

 cious to make use of this Unix "feature". Embedded control characters in file

 names might have nasty side effects when displayed on screen by some listing code

 without sufficient filtering. And, for ordinary users, it may be difficult to han?

 dle such file names (e.g. when trying to specify it for open, copy, move, or delete Page 11/20

 operations). Therefore, unzip applies a filter by default that removes potentially

 dangerous control characters from the extracted file names. The -^ option allows to

 override this filter in the rare case that embedded filename control characters are

 to be intentionally restored.

 -2 [VMS] force unconditionally conversion of file names to ODS2-compatible names. The

 default is to exploit the destination file system, preserving case and extended

 file name characters on an ODS5 destination file system; and applying the ODS2-com?

 patibility file name filtering on an ODS2 destination file system.

ENVIRONMENT OPTIONS

 unzip's default behavior may be modified via options placed in an environment variable.

 This can be done with any option, but it is probably most useful with the -a, -L, -C, -q,

 -o, or -n modifiers: make unzip auto-convert text files by default, make it convert file?

 names from uppercase systems to lowercase, make it match names case-insensitively, make it

 quieter, or make it always overwrite or never overwrite files as it extracts them. For

 example, to make unzip act as quietly as possible, only reporting errors, one would use

 one of the following commands:

 Unix Bourne shell:

 UNZIP=-qq; export UNZIP

 Unix C shell:

 setenv UNZIP -qq

 OS/2 or MS-DOS:

 set UNZIP=-qq

 VMS (quotes for lowercase):

 define UNZIP_OPTS "-qq"

 Environment options are, in effect, considered to be just like any other command-line op?

 tions, except that they are effectively the first options on the command line. To over?

 ride an environment option, one may use the ``minus operator'' to remove it. For in?

 stance, to override one of the quiet-flags in the example above, use the command

 unzip --q[other options] zipfile

 The first hyphen is the normal switch character, and the second is a minus sign, acting on

 the q option. Thus the effect here is to cancel one quantum of quietness. To cancel both

 quiet flags, two (or more) minuses may be used:

 unzip -t--q zipfile Page 12/20

 unzip ---qt zipfile

 (the two are equivalent). This may seem awkward or confusing, but it is reasonably intu?

 itive: just ignore the first hyphen and go from there. It is also consistent with the

 behavior of Unix nice(1).

 As suggested by the examples above, the default variable names are UNZIP_OPTS for VMS

 (where the symbol used to install unzip as a foreign command would otherwise be confused

 with the environment variable), and UNZIP for all other operating systems. For compati?

 bility with zip(1), UNZIPOPT is also accepted (don't ask). If both UNZIP and UNZIPOPT are

 defined, however, UNZIP takes precedence. unzip's diagnostic option (-v with no zipfile

 name) can be used to check the values of all four possible unzip and zipinfo environment

 variables.

 The timezone variable (TZ) should be set according to the local timezone in order for the

 -f and -u to operate correctly. See the description of -f above for details. This vari?

 able may also be necessary to get timestamps of extracted files to be set correctly. The

 WIN32 (Win9x/ME/NT4/2K/XP/2K3) port of unzip gets the timezone configuration from the reg?

 istry, assuming it is correctly set in the Control Panel. The TZ variable is ignored for

 this port.

DECRYPTION

 Encrypted archives are fully supported by Info-ZIP software, but due to United States ex?

 port restrictions, de-/encryption support might be disabled in your compiled binary. How?

 ever, since spring 2000, US export restrictions have been liberated, and our source ar?

 chives do now include full crypt code. In case you need binary distributions with crypt

 support enabled, see the file ``WHERE'' in any Info-ZIP source or binary distribution for

 locations both inside and outside the US.

 Some compiled versions of unzip may not support decryption. To check a version for crypt

 support, either attempt to test or extract an encrypted archive, or else check unzip's di?

 agnostic screen (see the -v option above) for ``[decryption]'' as one of the special com?

 pilation options.

 As noted above, the -P option may be used to supply a password on the command line, but at

 a cost in security. The preferred decryption method is simply to extract normally; if a

 zipfile member is encrypted, unzip will prompt for the password without echoing what is

 typed. unzip continues to use the same password as long as it appears to be valid, by

 testing a 12-byte header on each file. The correct password will always check out against Page 13/20

 the header, but there is a 1-in-256 chance that an incorrect password will as well. (This

 is a security feature of the PKWARE zipfile format; it helps prevent brute-force attacks

 that might otherwise gain a large speed advantage by testing only the header.) In the

 case that an incorrect password is given but it passes the header test anyway, either an

 incorrect CRC will be generated for the extracted data or else unzip will fail during the

 extraction because the ``decrypted'' bytes do not constitute a valid compressed data

 stream.

 If the first password fails the header check on some file, unzip will prompt for another

 password, and so on until all files are extracted. If a password is not known, entering a

 null password (that is, just a carriage return or ``Enter'') is taken as a signal to skip

 all further prompting. Only unencrypted files in the archive(s) will thereafter be ex?

 tracted. (In fact, that's not quite true; older versions of zip(1) and zipcloak(1) al?

 lowed null passwords, so unzip checks each encrypted file to see if the null password

 works. This may result in ``false positives'' and extraction errors, as noted above.)

 Archives encrypted with 8-bit passwords (for example, passwords with accented European

 characters) may not be portable across systems and/or other archivers. This problem stems

 from the use of multiple encoding methods for such characters, including Latin-1 (ISO

 8859-1) and OEM code page 850. DOS PKZIP 2.04g uses the OEM code page; Windows PKZIP 2.50

 uses Latin-1 (and is therefore incompatible with DOS PKZIP); Info-ZIP uses the OEM code

 page on DOS, OS/2 and Win3.x ports but ISO coding (Latin-1 etc.) everywhere else; and Nico

 Mak's WinZip 6.x does not allow 8-bit passwords at all. UnZip 5.3 (or newer) attempts to

 use the default character set first (e.g., Latin-1), followed by the alternate one (e.g.,

 OEM code page) to test passwords. On EBCDIC systems, if both of these fail, EBCDIC encod?

 ing will be tested as a last resort. (EBCDIC is not tested on non-EBCDIC systems, because

 there are no known archivers that encrypt using EBCDIC encoding.) ISO character encodings

 other than Latin-1 are not supported. The new addition of (partially) Unicode (resp.

 UTF-8) support in UnZip 6.0 has not yet been adapted to the encryption password handling

 in unzip. On systems that use UTF-8 as native character encoding, unzip simply tries de?

 cryption with the native UTF-8 encoded password; the built-in attempts to check the pass?

 word in translated encoding have not yet been adapted for UTF-8 support and will conse?

 quently fail.

EXAMPLES

 To use unzip to extract all members of the archive letters.zip into the current directory Page 14/20

 and subdirectories below it, creating any subdirectories as necessary:

 unzip letters

 To extract all members of letters.zip into the current directory only:

 unzip -j letters

 To test letters.zip, printing only a summary message indicating whether the archive is OK

 or not:

 unzip -tq letters

 To test all zipfiles in the current directory, printing only the summaries:

 unzip -tq *.zip

 (The backslash before the asterisk is only required if the shell expands wildcards, as in

 Unix; double quotes could have been used instead, as in the source examples below.) To

 extract to standard output all members of letters.zip whose names end in .tex, auto-con?

 verting to the local end-of-line convention and piping the output into more(1):

 unzip -ca letters *.tex | more

 To extract the binary file paper1.dvi to standard output and pipe it to a printing pro?

 gram:

 unzip -p articles paper1.dvi | dvips

 To extract all FORTRAN and C source files--*.f, *.c, *.h, and Makefile--into the /tmp di?

 rectory:

 unzip source.zip "*.[fch]" Makefile -d /tmp

 (the double quotes are necessary only in Unix and only if globbing is turned on). To ex?

 tract all FORTRAN and C source files, regardless of case (e.g., both *.c and *.C, and any

 makefile, Makefile, MAKEFILE or similar):

 unzip -C source.zip "*.[fch]" makefile -d /tmp

 To extract any such files but convert any uppercase MS-DOS or VMS names to lowercase and

 convert the line-endings of all of the files to the local standard (without respect to any

 files that might be marked ``binary''):

 unzip -aaCL source.zip "*.[fch]" makefile -d /tmp

 To extract only newer versions of the files already in the current directory, without

 querying (NOTE: be careful of unzipping in one timezone a zipfile created in another--ZIP

 archives other than those created by Zip 2.1 or later contain no timezone information, and

 a ``newer'' file from an eastern timezone may, in fact, be older):

 unzip -fo sources Page 15/20

 To extract newer versions of the files already in the current directory and to create any

 files not already there (same caveat as previous example):

 unzip -uo sources

 To display a diagnostic screen showing which unzip and zipinfo options are stored in envi?

 ronment variables, whether decryption support was compiled in, the compiler with which un?

 zip was compiled, etc.:

 unzip -v

 In the last five examples, assume that UNZIP or UNZIP_OPTS is set to -q. To do a singly

 quiet listing:

 unzip -l file.zip

 To do a doubly quiet listing:

 unzip -ql file.zip

 (Note that the ``.zip'' is generally not necessary.) To do a standard listing:

 unzip --ql file.zip

 or

 unzip -l-q file.zip

 or

 unzip -l--q file.zip

 (Extra minuses in options don't hurt.)

TIPS

 The current maintainer, being a lazy sort, finds it very useful to define a pair of

 aliases: tt for ``unzip -tq'' and ii for ``unzip -Z'' (or ``zipinfo''). One may then

 simply type ``tt zipfile'' to test an archive, something that is worth making a habit of

 doing. With luck unzip will report ``No errors detected in compressed data of zip?

 file.zip,'' after which one may breathe a sigh of relief.

 The maintainer also finds it useful to set the UNZIP environment variable to ``-aL'' and

 is tempted to add ``-C'' as well. His ZIPINFO variable is set to ``-z''.

DIAGNOSTICS

 The exit status (or error level) approximates the exit codes defined by PKWARE and takes

 on the following values, except under VMS:

 0 normal; no errors or warnings detected.

 1 one or more warning errors were encountered, but processing completed suc?

 cessfully anyway. This includes zipfiles where one or more files was Page 16/20

 skipped due to unsupported compression method or encryption with an unknown

 password.

 2 a generic error in the zipfile format was detected. Processing may have

 completed successfully anyway; some broken zipfiles created by other

 archivers have simple work-arounds.

 3 a severe error in the zipfile format was detected. Processing probably

 failed immediately.

 4 unzip was unable to allocate memory for one or more buffers during program

 initialization.

 5 unzip was unable to allocate memory or unable to obtain a tty to read the

 decryption password(s).

 6 unzip was unable to allocate memory during decompression to disk.

 7 unzip was unable to allocate memory during in-memory decompression.

 8 [currently not used]

 9 the specified zipfiles were not found.

 10 invalid options were specified on the command line.

 11 no matching files were found.

 50 the disk is (or was) full during extraction.

 51 the end of the ZIP archive was encountered prematurely.

 80 the user aborted unzip prematurely with control-C (or similar)

 81 testing or extraction of one or more files failed due to unsupported com?

 pression methods or unsupported decryption.

 82 no files were found due to bad decryption password(s). (If even one file is

 successfully processed, however, the exit status is 1.)

 VMS interprets standard Unix (or PC) return values as other, scarier-looking things, so

 unzip instead maps them into VMS-style status codes. The current mapping is as follows:

 1 (success) for normal exit, 0x7fff0001 for warning errors, and (0x7fff000? + 16*nor?

 mal_unzip_exit_status) for all other errors, where the `?' is 2 (error) for unzip values

 2, 9-11 and 80-82, and 4 (fatal error) for the remaining ones (3-8, 50, 51). In addition,

 there is a compilation option to expand upon this behavior: defining RETURN_CODES results

 in a human-readable explanation of what the error status means.

BUGS

 Multi-part archives are not yet supported, except in conjunction with zip. (All parts Page 17/20

 must be concatenated together in order, and then ``zip -F'' (for zip 2.x) or ``zip -FF''

 (for zip 3.x) must be performed on the concatenated archive in order to ``fix'' it. Also,

 zip 3.0 and later can combine multi-part (split) archives into a combined single-file ar?

 chive using ``zip -s- inarchive -O outarchive''. See the zip 3 manual page for more in?

 formation.) This will definitely be corrected in the next major release.

 Archives read from standard input are not yet supported, except with funzip (and then only

 the first member of the archive can be extracted).

 Archives encrypted with 8-bit passwords (e.g., passwords with accented European charac?

 ters) may not be portable across systems and/or other archivers. See the discussion in

 DECRYPTION above.

 unzip's -M (``more'') option tries to take into account automatic wrapping of long lines.

 However, the code may fail to detect the correct wrapping locations. First, TAB characters

 (and similar control sequences) are not taken into account, they are handled as ordinary

 printable characters. Second, depending on the actual system / OS port, unzip may not de?

 tect the true screen geometry but rather rely on "commonly used" default dimensions. The

 correct handling of tabs would require the implementation of a query for the actual tabu?

 lator setup on the output console.

 Dates, times and permissions of stored directories are not restored except under Unix. (On

 Windows NT and successors, timestamps are now restored.)

 [MS-DOS] When extracting or testing files from an archive on a defective floppy diskette,

 if the ``Fail'' option is chosen from DOS's ``Abort, Retry, Fail?'' message, older ver?

 sions of unzip may hang the system, requiring a reboot. This problem appears to be fixed,

 but control-C (or control-Break) can still be used to terminate unzip.

 Under DEC Ultrix, unzip would sometimes fail on long zipfiles (bad CRC, not always repro?

 ducible). This was apparently due either to a hardware bug (cache memory) or an operating

 system bug (improper handling of page faults?). Since Ultrix has been abandoned in favor

 of Digital Unix (OSF/1), this may not be an issue anymore.

 [Unix] Unix special files such as FIFO buffers (named pipes), block devices and character

 devices are not restored even if they are somehow represented in the zipfile, nor are

 hard-linked files relinked. Basically the only file types restored by unzip are regular

 files, directories and symbolic (soft) links.

 [OS/2] Extended attributes for existing directories are only updated if the -o (``over?

 write all'') option is given. This is a limitation of the operating system; because di? Page 18/20

 rectories only have a creation time associated with them, unzip has no way to determine

 whether the stored attributes are newer or older than those on disk. In practice this may

 mean a two-pass approach is required: first unpack the archive normally (with or without

 freshening/updating existing files), then overwrite just the directory entries (e.g.,

 ``unzip -o foo */'').

 [VMS] When extracting to another directory, only the [.foo] syntax is accepted for the -d

 option; the simple Unix foo syntax is silently ignored (as is the less common VMS foo.dir

 syntax).

 [VMS] When the file being extracted already exists, unzip's query only allows skipping,

 overwriting or renaming; there should additionally be a choice for creating a new version

 of the file. In fact, the ``overwrite'' choice does create a new version; the old version

 is not overwritten or deleted.

SEE ALSO

 funzip(1), zip(1), zipcloak(1), zipgrep(1), zipinfo(1), zipnote(1), zipsplit(1)

URL

 The Info-ZIP home page is currently at

 http://www.info-zip.org/pub/infozip/

 or

 ftp://ftp.info-zip.org/pub/infozip/ .

AUTHORS

 The primary Info-ZIP authors (current semi-active members of the Zip-Bugs workgroup) are:

 Ed Gordon (Zip, general maintenance, shared code, Zip64, Win32, Unix, Unicode); Christian

 Spieler (UnZip maintenance coordination, VMS, MS-DOS, Win32, shared code, general Zip and

 UnZip integration and optimization); Onno van der Linden (Zip); Mike White (Win32, Windows

 GUI, Windows DLLs); Kai Uwe Rommel (OS/2, Win32); Steven M. Schweda (VMS, Unix, support of

 new features); Paul Kienitz (Amiga, Win32, Unicode); Chris Herborth (BeOS, QNX, Atari);

 Jonathan Hudson (SMS/QDOS); Sergio Monesi (Acorn RISC OS); Harald Denker (Atari, MVS);

 John Bush (Solaris, Amiga); Hunter Goatley (VMS, Info-ZIP Site maintenance); Steve Salis?

 bury (Win32); Steve Miller (Windows CE GUI), Johnny Lee (MS-DOS, Win32, Zip64); and Dave

 Smith (Tandem NSK).

 The following people were former members of the Info-ZIP development group and provided

 major contributions to key parts of the current code: Greg ``Cave Newt'' Roelofs (UnZip,

 unshrink decompression); Jean-loup Gailly (deflate compression); Mark Adler (inflate de? Page 19/20

 compression, fUnZip).

 The author of the original unzip code upon which Info-ZIP's was based is Samuel H. Smith;

 Carl Mascott did the first Unix port; and David P. Kirschbaum organized and led Info-ZIP

 in its early days with Keith Petersen hosting the original mailing list at WSMR-SimTel20.

 The full list of contributors to UnZip has grown quite large; please refer to the CONTRIBS

 file in the UnZip source distribution for a relatively complete version.

VERSIONS

 v1.2 15 Mar 89 Samuel H. Smith

 v2.0 9 Sep 89 Samuel H. Smith

 v2.x fall 1989 many Usenet contributors

 v3.0 1 May 90 Info-ZIP (DPK, consolidator)

 v3.1 15 Aug 90 Info-ZIP (DPK, consolidator)

 v4.0 1 Dec 90 Info-ZIP (GRR, maintainer)

 v4.1 12 May 91 Info-ZIP

 v4.2 20 Mar 92 Info-ZIP (Zip-Bugs subgroup, GRR)

 v5.0 21 Aug 92 Info-ZIP (Zip-Bugs subgroup, GRR)

 v5.01 15 Jan 93 Info-ZIP (Zip-Bugs subgroup, GRR)

 v5.1 7 Feb 94 Info-ZIP (Zip-Bugs subgroup, GRR)

 v5.11 2 Aug 94 Info-ZIP (Zip-Bugs subgroup, GRR)

 v5.12 28 Aug 94 Info-ZIP (Zip-Bugs subgroup, GRR)

 v5.2 30 Apr 96 Info-ZIP (Zip-Bugs subgroup, GRR)

 v5.3 22 Apr 97 Info-ZIP (Zip-Bugs subgroup, GRR)

 v5.31 31 May 97 Info-ZIP (Zip-Bugs subgroup, GRR)

 v5.32 3 Nov 97 Info-ZIP (Zip-Bugs subgroup, GRR)

 v5.4 28 Nov 98 Info-ZIP (Zip-Bugs subgroup, SPC)

 v5.41 16 Apr 00 Info-ZIP (Zip-Bugs subgroup, SPC)

 v5.42 14 Jan 01 Info-ZIP (Zip-Bugs subgroup, SPC)

 v5.5 17 Feb 02 Info-ZIP (Zip-Bugs subgroup, SPC)

 v5.51 22 May 04 Info-ZIP (Zip-Bugs subgroup, SPC)

 v5.52 28 Feb 05 Info-ZIP (Zip-Bugs subgroup, SPC)

 v6.0 20 Apr 09 Info-ZIP (Zip-Bugs subgroup, SPC)

Info-ZIP 20 April 2009 (v6.0) UNZIP(1)

Page 20/20

