
Rocky Enterprise Linux 9.2 Manual Pages on command 'unshare.2'

$ man unshare.2

UNSHARE(2) Linux Programmer's Manual UNSHARE(2)

NAME

 unshare - disassociate parts of the process execution context

SYNOPSIS

 #define _GNU_SOURCE

 #include <sched.h>

 int unshare(int flags);

DESCRIPTION

 unshare() allows a process (or thread) to disassociate parts of its execution context that

 are currently being shared with other processes (or threads). Part of the execution con?

 text, such as the mount namespace, is shared implicitly when a new process is created us?

 ing fork(2) or vfork(2), while other parts, such as virtual memory, may be shared by ex?

 plicit request when creating a process or thread using clone(2).

 The main use of unshare() is to allow a process to control its shared execution context

 without creating a new process.

 The flags argument is a bit mask that specifies which parts of the execution context

 should be unshared. This argument is specified by ORing together zero or more of the fol?

 lowing constants:

 CLONE_FILES

 Reverse the effect of the clone(2) CLONE_FILES flag. Unshare the file descriptor

 table, so that the calling process no longer shares its file descriptors with any

 other process.

 CLONE_FS Page 1/7

 Reverse the effect of the clone(2) CLONE_FS flag. Unshare filesystem attributes,

 so that the calling process no longer shares its root directory (chroot(2)), cur?

 rent directory (chdir(2)), or umask (umask(2)) attributes with any other process.

 CLONE_NEWCGROUP (since Linux 4.6)

 This flag has the same effect as the clone(2) CLONE_NEWCGROUP flag. Unshare the

 cgroup namespace. Use of CLONE_NEWCGROUP requires the CAP_SYS_ADMIN capability.

 CLONE_NEWIPC (since Linux 2.6.19)

 This flag has the same effect as the clone(2) CLONE_NEWIPC flag. Unshare the IPC

 namespace, so that the calling process has a private copy of the IPC namespace

 which is not shared with any other process. Specifying this flag automatically im?

 plies CLONE_SYSVSEM as well. Use of CLONE_NEWIPC requires the CAP_SYS_ADMIN capa?

 bility.

 CLONE_NEWNET (since Linux 2.6.24)

 This flag has the same effect as the clone(2) CLONE_NEWNET flag. Unshare the net?

 work namespace, so that the calling process is moved into a new network namespace

 which is not shared with any previously existing process. Use of CLONE_NEWNET re?

 quires the CAP_SYS_ADMIN capability.

 CLONE_NEWNS

 This flag has the same effect as the clone(2) CLONE_NEWNS flag. Unshare the mount

 namespace, so that the calling process has a private copy of its namespace which is

 not shared with any other process. Specifying this flag automatically implies

 CLONE_FS as well. Use of CLONE_NEWNS requires the CAP_SYS_ADMIN capability. For

 further information, see mount_namespaces(7).

 CLONE_NEWPID (since Linux 3.8)

 This flag has the same effect as the clone(2) CLONE_NEWPID flag. Unshare the PID

 namespace, so that the calling process has a new PID namespace for its children

 which is not shared with any previously existing process. The calling process is

 not moved into the new namespace. The first child created by the calling process

 will have the process ID 1 and will assume the role of init(1) in the new name?

 space. CLONE_NEWPID automatically implies CLONE_THREAD as well. Use of CLONE_NEW?

 PID requires the CAP_SYS_ADMIN capability. For further information, see pid_name?

 spaces(7).

 CLONE_NEWTIME (since Linux 5.6) Page 2/7

 Unshare the time namespace, so that the calling process has a new time namespace

 for its children which is not shared with any previously existing process. The

 calling process is not moved into the new namespace. Use of CLONE_NEWTIME requires

 the CAP_SYS_ADMIN capability. For further information, see time_namespaces(7).

 CLONE_NEWUSER (since Linux 3.8)

 This flag has the same effect as the clone(2) CLONE_NEWUSER flag. Unshare the user

 namespace, so that the calling process is moved into a new user namespace which is

 not shared with any previously existing process. As with the child process created

 by clone(2) with the CLONE_NEWUSER flag, the caller obtains a full set of capabili?

 ties in the new namespace.

 CLONE_NEWUSER requires that the calling process is not threaded; specifying

 CLONE_NEWUSER automatically implies CLONE_THREAD. Since Linux 3.9, CLONE_NEWUSER

 also automatically implies CLONE_FS. CLONE_NEWUSER requires that the user ID and

 group ID of the calling process are mapped to user IDs and group IDs in the user

 namespace of the calling process at the time of the call.

 For further information on user namespaces, see user_namespaces(7).

 CLONE_NEWUTS (since Linux 2.6.19)

 This flag has the same effect as the clone(2) CLONE_NEWUTS flag. Unshare the UTS

 IPC namespace, so that the calling process has a private copy of the UTS namespace

 which is not shared with any other process. Use of CLONE_NEWUTS requires the

 CAP_SYS_ADMIN capability.

 CLONE_SYSVSEM (since Linux 2.6.26)

 This flag reverses the effect of the clone(2) CLONE_SYSVSEM flag. Unshare System V

 semaphore adjustment (semadj) values, so that the calling process has a new empty

 semadj list that is not shared with any other process. If this is the last process

 that has a reference to the process's current semadj list, then the adjustments in

 that list are applied to the corresponding semaphores, as described in semop(2).

 In addition, CLONE_THREAD, CLONE_SIGHAND, and CLONE_VM can be specified in flags if the

 caller is single threaded (i.e., it is not sharing its address space with another process

 or thread). In this case, these flags have no effect. (Note also that specifying

 CLONE_THREAD automatically implies CLONE_VM, and specifying CLONE_VM automatically implies

 CLONE_SIGHAND.) If the process is multithreaded, then the use of these flags results in

 an error. Page 3/7

 If flags is specified as zero, then unshare() is a no-op; no changes are made to the call?

 ing process's execution context.

RETURN VALUE

 On success, zero returned. On failure, -1 is returned and errno is set to indicate the

 error.

ERRORS

 EINVAL An invalid bit was specified in flags.

 EINVAL CLONE_THREAD, CLONE_SIGHAND, or CLONE_VM was specified in flags, and the caller is

 multithreaded.

 EINVAL CLONE_NEWIPC was specified in flags, but the kernel was not configured with the

 CONFIG_SYSVIPC and CONFIG_IPC_NS options.

 EINVAL CLONE_NEWNET was specified in flags, but the kernel was not configured with the

 CONFIG_NET_NS option.

 EINVAL CLONE_NEWPID was specified in flags, but the kernel was not configured with the

 CONFIG_PID_NS option.

 EINVAL CLONE_NEWUSER was specified in flags, but the kernel was not configured with the

 CONFIG_USER_NS option.

 EINVAL CLONE_NEWUTS was specified in flags, but the kernel was not configured with the

 CONFIG_UTS_NS option.

 EINVAL CLONE_NEWPID was specified in flags, but the process has previously called un?

 share() with the CLONE_NEWPID flag.

 ENOMEM Cannot allocate sufficient memory to copy parts of caller's context that need to be

 unshared.

 ENOSPC (since Linux 3.7)

 CLONE_NEWPID was specified in flags, but the limit on the nesting depth of PID

 namespaces would have been exceeded; see pid_namespaces(7).

 ENOSPC (since Linux 4.9; beforehand EUSERS)

 CLONE_NEWUSER was specified in flags, and the call would cause the limit on the

 number of nested user namespaces to be exceeded. See user_namespaces(7).

 From Linux 3.11 to Linux 4.8, the error diagnosed in this case was EUSERS.

 ENOSPC (since Linux 4.9)

 One of the values in flags specified the creation of a new user namespace, but do?

 ing so would have caused the limit defined by the corresponding file in Page 4/7

 /proc/sys/user to be exceeded. For further details, see namespaces(7).

 EPERM The calling process did not have the required privileges for this operation.

 EPERM CLONE_NEWUSER was specified in flags, but either the effective user ID or the ef?

 fective group ID of the caller does not have a mapping in the parent namespace (see

 user_namespaces(7)).

 EPERM (since Linux 3.9)

 CLONE_NEWUSER was specified in flags and the caller is in a chroot environment

 (i.e., the caller's root directory does not match the root directory of the mount

 namespace in which it resides).

 EUSERS (from Linux 3.11 to Linux 4.8)

 CLONE_NEWUSER was specified in flags, and the limit on the number of nested user

 namespaces would be exceeded. See the discussion of the ENOSPC error above.

VERSIONS

 The unshare() system call was added to Linux in kernel 2.6.16.

CONFORMING TO

 The unshare() system call is Linux-specific.

NOTES

 Not all of the process attributes that can be shared when a new process is created using

 clone(2) can be unshared using unshare(). In particular, as at kernel 3.8, unshare() does

 not implement flags that reverse the effects of CLONE_SIGHAND, CLONE_THREAD, or CLONE_VM.

 Such functionality may be added in the future, if required.

EXAMPLES

 The program below provides a simple implementation of the unshare(1) command, which un?

 shares one or more namespaces and executes the command supplied in its command-line argu?

 ments. Here's an example of the use of this program, running a shell in a new mount name?

 space, and verifying that the original shell and the new shell are in separate mount name?

 spaces:

 $ readlink /proc/$$/ns/mnt

 mnt:[4026531840]

 $ sudo ./unshare -m /bin/bash

 # readlink /proc/$$/ns/mnt

 mnt:[4026532325]

 The differing output of the two readlink(1) commands shows that the two shells are in dif? Page 5/7

 ferent mount namespaces.

 Program source

 /* unshare.c

 A simple implementation of the unshare(1) command: unshare

 namespaces and execute a command.

 */

 #define _GNU_SOURCE

 #include <sched.h>

 #include <unistd.h>

 #include <stdlib.h>

 #include <stdio.h>

 /* A simple error-handling function: print an error message based

 on the value in 'errno' and terminate the calling process */

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 static void

 usage(char *pname)

 {

 fprintf(stderr, "Usage: %s [options] program [arg...]\n", pname);

 fprintf(stderr, "Options can be:\n");

 fprintf(stderr, " -C unshare cgroup namespace\n");

 fprintf(stderr, " -i unshare IPC namespace\n");

 fprintf(stderr, " -m unshare mount namespace\n");

 fprintf(stderr, " -n unshare network namespace\n");

 fprintf(stderr, " -p unshare PID namespace\n");

 fprintf(stderr, " -t unshare time namespace\n");

 fprintf(stderr, " -u unshare UTS namespace\n");

 fprintf(stderr, " -U unshare user namespace\n");

 exit(EXIT_FAILURE);

 }

 int

 main(int argc, char *argv[])

 { Page 6/7

 int flags, opt;

 flags = 0;

 while ((opt = getopt(argc, argv, "CimnptuU")) != -1) {

 switch (opt) {

 case 'C': flags |= CLONE_NEWCGROUP; break;

 case 'i': flags |= CLONE_NEWIPC; break;

 case 'm': flags |= CLONE_NEWNS; break;

 case 'n': flags |= CLONE_NEWNET; break;

 case 'p': flags |= CLONE_NEWPID; break;

 case 't': flags |= CLONE_NEWTIME; break;

 case 'u': flags |= CLONE_NEWUTS; break;

 case 'U': flags |= CLONE_NEWUSER; break;

 default: usage(argv[0]);

 }

 }

 if (optind >= argc)

 usage(argv[0]);

 if (unshare(flags) == -1)

 errExit("unshare");

 execvp(argv[optind], &argv[optind]);

 errExit("execvp");

 }

SEE ALSO

 unshare(1), clone(2), fork(2), kcmp(2), setns(2), vfork(2), namespaces(7)

 Documentation/userspace-api/unshare.rst in the Linux kernel source tree (or Documenta?

 tion/unshare.txt before Linux 4.12)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 UNSHARE(2)

Page 7/7

