
Rocky Enterprise Linux 9.2 Manual Pages on command 'unlink.2'

$ man unlink.2

UNLINK(2) Linux Programmer's Manual UNLINK(2)

NAME

 unlink, unlinkat - delete a name and possibly the file it refers to

SYNOPSIS

 #include <unistd.h>

 int unlink(const char *pathname);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <unistd.h>

 int unlinkat(int dirfd, const char *pathname, int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 unlinkat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 unlink() deletes a name from the filesystem. If that name was the last link to a file and

 no processes have the file open, the file is deleted and the space it was using is made

 available for reuse.

 If the name was the last link to a file but any processes still have the file open, the

 file will remain in existence until the last file descriptor referring to it is closed.

 If the name referred to a symbolic link, the link is removed.

 If the name referred to a socket, FIFO, or device, the name for it is removed but pro? Page 1/4

 cesses which have the object open may continue to use it.

 unlinkat()

 The unlinkat() system call operates in exactly the same way as either unlink() or rmdir(2)

 (depending on whether or not flags includes the AT_REMOVEDIR flag) except for the differ?

 ences described here.

 If the pathname given in pathname is relative, then it is interpreted relative to the di?

 rectory referred to by the file descriptor dirfd (rather than relative to the current

 working directory of the calling process, as is done by unlink() and rmdir(2) for a rela?

 tive pathname).

 If the pathname given in pathname is relative and dirfd is the special value AT_FDCWD,

 then pathname is interpreted relative to the current working directory of the calling

 process (like unlink() and rmdir(2)).

 If the pathname given in pathname is absolute, then dirfd is ignored.

 flags is a bit mask that can either be specified as 0, or by ORing together flag values

 that control the operation of unlinkat(). Currently, only one such flag is defined:

 AT_REMOVEDIR

 By default, unlinkat() performs the equivalent of unlink() on pathname. If the

 AT_REMOVEDIR flag is specified, then performs the equivalent of rmdir(2) on path?

 name.

 See openat(2) for an explanation of the need for unlinkat().

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 EACCES Write access to the directory containing pathname is not allowed for the process's

 effective UID, or one of the directories in pathname did not allow search permis?

 sion. (See also path_resolution(7).)

 EBUSY The file pathname cannot be unlinked because it is being used by the system or an?

 other process; for example, it is a mount point or the NFS client software created

 it to represent an active but otherwise nameless inode ("NFS silly renamed").

 EFAULT pathname points outside your accessible address space.

 EIO An I/O error occurred.

 EISDIR pathname refers to a directory. (This is the non-POSIX value returned by Linux

 since 2.1.132.) Page 2/4

 ELOOP Too many symbolic links were encountered in translating pathname.

 ENAMETOOLONG

 pathname was too long.

 ENOENT A component in pathname does not exist or is a dangling symbolic link, or pathname

 is empty.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR

 A component used as a directory in pathname is not, in fact, a directory.

 EPERM The system does not allow unlinking of directories, or unlinking of directories re?

 quires privileges that the calling process doesn't have. (This is the POSIX pre?

 scribed error return; as noted above, Linux returns EISDIR for this case.)

 EPERM (Linux only)

 The filesystem does not allow unlinking of files.

 EPERM or EACCES

 The directory containing pathname has the sticky bit (S_ISVTX) set and the

 process's effective UID is neither the UID of the file to be deleted nor that of

 the directory containing it, and the process is not privileged (Linux: does not

 have the CAP_FOWNER capability).

 EPERM The file to be unlinked is marked immutable or append-only. (See ioctl_iflags(2).)

 EROFS pathname refers to a file on a read-only filesystem.

 The same errors that occur for unlink() and rmdir(2) can also occur for unlinkat(). The

 following additional errors can occur for unlinkat():

 EBADF dirfd is not a valid file descriptor.

 EINVAL An invalid flag value was specified in flags.

 EISDIR pathname refers to a directory, and AT_REMOVEDIR was not specified in flags.

 ENOTDIR

 pathname is relative and dirfd is a file descriptor referring to a file other than

 a directory.

VERSIONS

 unlinkat() was added to Linux in kernel 2.6.16; library support was added to glibc in ver?

 sion 2.4.

CONFORMING TO

 unlink(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008. Page 3/4

 unlinkat(): POSIX.1-2008.

NOTES

 Glibc notes

 On older kernels where unlinkat() is unavailable, the glibc wrapper function falls back to

 the use of unlink() or rmdir(2). When pathname is a relative pathname, glibc constructs a

 pathname based on the symbolic link in /proc/self/fd that corresponds to the dirfd argu?

 ment.

BUGS

 Infelicities in the protocol underlying NFS can cause the unexpected disappearance of

 files which are still being used.

SEE ALSO

 rm(1), unlink(1), chmod(2), link(2), mknod(2), open(2), rename(2), rmdir(2), mkfifo(3),

 remove(3), path_resolution(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 UNLINK(2)

Page 4/4

