
Rocky Enterprise Linux 9.2 Manual Pages on command 'tzfile.5'

$ man tzfile.5

TZFILE(5) Linux Programmer's Manual TZFILE(5)

NAME

 tzfile - timezone information

DESCRIPTION

 The timezone information files used by tzset(3) are typically found under a directory with

 a name like /usr/share/zoneinfo. These files use the format described in Internet RFC

 8536. Each file is a sequence of 8-bit bytes. In a file, a binary integer is represented

 by a sequence of one or more bytes in network order (bigendian, or high-order byte first),

 with all bits significant, a signed binary integer is represented using two's complement,

 and a boolean is represented by a one-byte binary integer that is either 0 (false) or 1

 (true). The format begins with a 44-byte header containing the following fields:

 * The magic four-byte ASCII sequence ?TZif? identifies the file as a timezone information

 file.

 * A byte identifying the version of the file's format (as of 2017, either an ASCII NUL, or

 ?2?, or ?3?).

 * Fifteen bytes containing zeros reserved for future use.

 * Six four-byte integer values, in the following order:

 tzh_ttisutcnt

 The number of UT/local indicators stored in the file. (UT is Universal Time.)

 tzh_ttisstdcnt

 The number of standard/wall indicators stored in the file.

 tzh_leapcnt

 The number of leap seconds for which data entries are stored in the file. Page 1/7

 tzh_timecnt

 The number of transition times for which data entries are stored in the file.

 tzh_typecnt

 The number of local time types for which data entries are stored in the file

 (must not be zero).

 tzh_charcnt

 The number of bytes of time zone abbreviation strings stored in the file.

 The above header is followed by the following fields, whose lengths depend on the contents

 of the header:

 * tzh_timecnt four-byte signed integer values sorted in ascending order. These values are

 written in network byte order. Each is used as a transition time (as returned by

 time(2)) at which the rules for computing local time change.

 * tzh_timecnt one-byte unsigned integer values; each one but the last tells which of the

 different types of local time types described in the file is associated with the time

 period starting with the same-indexed transition time and continuing up to but not in?

 cluding the next transition time. (The last time type is present only for consistency

 checking with the POSIX-style TZ string described below.) These values serve as indices

 into the next field.

 * tzh_typecnt ttinfo entries, each defined as follows:

 struct ttinfo {

 int32_t tt_utoff;

 unsigned char tt_isdst;

 unsigned char tt_desigidx;

 };

 Each structure is written as a four-byte signed integer value for tt_utoff, in network

 byte order, followed by a one-byte boolean for tt_isdst and a one-byte value for tt_de?

 sigidx. In each structure, tt_utoff gives the number of seconds to be added to UT,

 tt_isdst tells whether tm_isdst should be set by localtime(3) and tt_desigidx serves as

 an index into the array of time zone abbreviation bytes that follow the ttinfo struc?

 ture(s) in the file. The tt_utoff value is never equal to -2**31, to let 32-bit clients

 negate it without overflow. Also, in realistic applications tt_utoff is in the range

 [-89999, 93599] (i.e., more than -25 hours and less than 26 hours); this allows easy

 support by implementations that already support the POSIX-required range [-24:59:59, Page 2/7

 25:59:59].

 * tzh_leapcnt pairs of four-byte values, written in network byte order; the first value of

 each pair gives the nonnegative time (as returned by time(2)) at which a leap second oc?

 curs; the second is a signed integer specifying the total number of leap seconds to be

 applied during the time period starting at the given time. The pairs of values are

 sorted in ascending order by time. Each transition is for one leap second, either posi?

 tive or negative; transitions always separated by at least 28 days minus 1 second.

 * tzh_ttisstdcnt standard/wall indicators, each stored as a one-byte boolean; they tell

 whether the transition times associated with local time types were specified as standard

 time or local (wall clock) time.

 * tzh_ttisutcnt UT/local indicators, each stored as a one-byte boolean; they tell whether

 the transition times associated with local time types were specified as UT or local

 time. If a UT/local indicator is set, the corresponding standard/wall indicator must

 also be set.

 The standard/wall and UT/local indicators were designed for transforming a TZif file's

 transition times into transitions appropriate for another time zone specified via a POSIX-

 style TZ string that lacks rules. For example, when TZ="EET-2EEST" and there is no TZif

 file "EET-2EEST", the idea was to adapt the transition times from a TZif file with the

 well-known name "posixrules" that is present only for this purpose and is a copy of the

 file "Europe/Brussels", a file with a different UT offset. POSIX does not specify this

 obsolete transformational behavior, the default rules are installation-dependent, and no

 implementation is known to support this feature for timestamps past 2037, so users desir?

 ing (say) Greek time should instead specify TZ="Europe/Athens" for better historical cov?

 erage, falling back on TZ="EET-2EEST,M3.5.0/3,M10.5.0/4" if POSIX conformance is required

 and older timestamps need not be handled accurately.

 The localtime(3) function normally uses the first ttinfo structure in the file if either

 tzh_timecnt is zero or the time argument is less than the first transition time recorded

 in the file.

NOTES

 This manual page documents <tzfile.h> in the glibc source archive, see timezone/tzfile.h.

 It seems that timezone uses tzfile internally, but glibc refuses to expose it to

 userspace. This is most likely because the standardised functions are more useful and

 portable, and actually documented by glibc. It may only be in glibc just to support the Page 3/7

 non-glibc-maintained timezone data (which is maintained by some other entity).

 Version 2 format

 For version-2-format timezone files, the above header and data are followed by a second

 header and data, identical in format except that eight bytes are used for each transition

 time or leap second time. (Leap second counts remain four bytes.) After the second

 header and data comes a newline-enclosed, POSIX-TZ-environment-variable-style string for

 use in handling instants after the last transition time stored in the file or for all in?

 stants if the file has no transitions. The POSIX-style TZ string is empty (i.e., nothing

 between the newlines) if there is no POSIX representation for such instants. If nonempty,

 the POSIX-style TZ string must agree with the local time type after the last transition

 time if present in the eight-byte data; for example, given the string

 ?WET0WEST,M3.5.0,M10.5.0/3? then if a last transition time is in July, the transition's

 local time type must specify a daylight-saving time abbreviated ?WEST? that is one hour

 east of UT. Also, if there is at least one transition, time type 0 is associated with the

 time period from the indefinite past up to but not including the earliest transition time.

 Version 3 format

 For version-3-format timezone files, the POSIX-TZ-style string may use two minor exten?

 sions to the POSIX TZ format, as described in newtzset(3). First, the hours part of its

 transition times may be signed and range from -167 through 167 instead of the POSIX-re?

 quired unsigned values from 0 through 24. Second, DST is in effect all year if it starts

 January 1 at 00:00 and ends December 31 at 24:00 plus the difference between daylight sav?

 ing and standard time.

 Interoperability considerations

 Future changes to the format may append more data.

 Version 1 files are considered a legacy format and should be avoided, as they do not sup?

 port transition times after the year 2038. Readers that only understand Version 1 must

 ignore any data that extends beyond the calculated end of the version 1 data block.

 Writers should generate a version 3 file if TZ string extensions are necessary to accu?

 rately model transition times. Otherwise, version 2 files should be generated.

 The sequence of time changes defined by the version 1 header and data block should be a

 contiguous subsequence of the time changes defined by the version 2+ header and data

 block, and by the footer. This guideline helps obsolescent version 1 readers agree with

 current readers about timestamps within the contiguous subsequence. It also lets writers Page 4/7

 not supporting obsolescent readers use a tzh_timecnt of zero in the version 1 data block

 to save space.

 Time zone designations should consist of at least three (3) and no more than six (6) ASCII

 characters from the set of alphanumerics, ?-?, and ?+?. This is for compatibility with

 POSIX requirements for time zone abbreviations.

 When reading a version 2 or 3 file, readers should ignore the version 1 header and data

 block except for the purpose of skipping over them.

 Readers should calculate the total lengths of the headers and data blocks and check that

 they all fit within the actual file size, as part of a validity check for the file.

 Common interoperability issues

 This section documents common problems in reading or writing TZif files. Most of these

 are problems in generating TZif files for use by older readers. The goals of this section

 are:

 * to help TZif writers output files that avoid common pitfalls in older or buggy TZif

 readers,

 * to help TZif readers avoid common pitfalls when reading files generated by future TZif

 writers, and

 * to help any future specification authors see what sort of problems arise when the TZif

 format is changed.

 When new versions of the TZif format have been defined, a design goal has been that a

 reader can successfully use a TZif file even if the file is of a later TZif version than

 what the reader was designed for. When complete compatibility was not achieved, an at?

 tempt was made to limit glitches to rarely used timestamps, and to allow simple partial

 workarounds in writers designed to generate new-version data useful even for older-version

 readers. This section attempts to document these compatibility issues and workarounds, as

 well as to document other common bugs in readers.

 Interoperability problems with TZif include the following:

 * Some readers examine only version 1 data. As a partial workaround, a writer can output

 as much version 1 data as possible. However, a reader should ignore version 1 data, and

 should use version 2+ data even if the reader's native timestamps have only 32 bits.

 * Some readers designed for version 2 might mishandle timestamps after a version 3 file's

 last transition, because they cannot parse extensions to POSIX in the TZ-like string.

 As a partial workaround, a writer can output more transitions than necessary, so that Page 5/7

 only far-future timestamps are mishandled by version 2 readers.

 * Some readers designed for version 2 do not support permanent daylight saving time, e.g.,

 a TZ string ?EST5EDT,0/0,J365/25? denoting permanent Eastern Daylight Time (-04). As a

 partial workaround, a writer can substitute standard time for the next time zone east,

 e.g., ?AST4? for permanent Atlantic Standard Time (-04).

 * Some readers ignore the footer, and instead predict future timestamps from the time type

 of the last transition. As a partial workaround, a writer can output more transitions

 than necessary.

 * Some readers do not use time type 0 for timestamps before the first transition, in that

 they infer a time type using a heuristic that does not always select time type 0. As a

 partial workaround, a writer can output a dummy (no-op) first transition at an early

 time.

 * Some readers mishandle timestamps before the first transition that has a timestamp not

 less than -2**31. Readers that support only 32-bit timestamps are likely to be more

 prone to this problem, for example, when they process 64-bit transitions only some of

 which are representable in 32 bits. As a partial workaround, a writer can output a

 dummy transition at timestamp -2**31.

 * Some readers mishandle a transition if its timestamp has the minimum possible signed

 64-bit value. Timestamps less than -2**59 are not recommended.

 * Some readers mishandle POSIX-style TZ strings that contain ?<? or ?>?. As a partial

 workaround, a writer can avoid using ?<? or ?>? for time zone abbreviations containing

 only alphabetic characters.

 * Many readers mishandle time zone abbreviations that contain non-ASCII characters. These

 characters are not recommended.

 * Some readers may mishandle time zone abbreviations that contain fewer than 3 or more

 than 6 characters, or that contain ASCII characters other than alphanumerics, ?-?, and

 ?+?. These abbreviations are not recommended.

 * Some readers mishandle TZif files that specify daylight-saving time UT offsets that are

 less than the UT offsets for the corresponding standard time. These readers do not sup?

 port locations like Ireland, which uses the equivalent of the POSIX TZ string

 ?IST-1GMT0,M10.5.0,M3.5.0/1?, observing standard time (IST, +01) in summer and daylight

 saving time (GMT, +00) in winter. As a partial workaround, a writer can output data for

 the equivalent of the POSIX TZ string ?GMT0IST,M3.5.0/1,M10.5.0?, thus swapping standard Page 6/7

 and daylight saving time. Although this workaround misidentifies which part of the year

 uses daylight saving time, it records UT offsets and time zone abbreviations correctly.

 Some interoperability problems are reader bugs that are listed here mostly as warnings to

 developers of readers.

 * Some readers do not support negative timestamps. Developers of distributed applications

 should keep this in mind if they need to deal with pre-1970 data.

 * Some readers mishandle timestamps before the first transition that has a nonnegative

 timestamp. Readers that do not support negative timestamps are likely to be more prone

 to this problem.

 * Some readers mishandle time zone abbreviations like ?-08? that contain ?+?, ?-?, or dig?

 its.

 * Some readers mishandle UT offsets that are out of the traditional range of -12 through

 +12 hours, and so do not support locations like Kiritimati that are outside this range.

 * Some readers mishandle UT offsets in the range [-3599, -1] seconds from UT, because they

 integer-divide the offset by 3600 to get 0 and then display the hour part as ?+00?.

 * Some readers mishandle UT offsets that are not a multiple of one hour, or of 15 minutes,

 or of 1 minute.

SEE ALSO

 time(2), localtime(3), tzset(3), tzselect(8), zdump(8), zic(8).

 Olson A, Eggert P, Murchison K. The Time Zone Information Format (TZif). 2019 Feb.

 Internet RFC 8536 ?https://www.rfc-editor.org/info/rfc8536? doi:10.17487/RFC8536 ?https://

 doi.org/10.17487/RFC8536?.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

 2020-04-27 TZFILE(5)

Page 7/7

