
Rocky Enterprise Linux 9.2 Manual Pages on command 'tcsh.1'

$ man tcsh.1

TCSH(1) General Commands Manual TCSH(1)

NAME

 tcsh - C shell with file name completion and command line editing

SYNOPSIS

 tcsh [-bcdefFimnqstvVxX] [-Dname[=value]] [arg ...]

 tcsh -l

DESCRIPTION

 tcsh is an enhanced but completely compatible version of the Berkeley UNIX C shell,

 csh(1). It is a command language interpreter usable both as an interactive login shell

 and a shell script command processor. It includes a command-line editor (see The command-

 line editor), programmable word completion (see Completion and listing), spelling correc?

 tion (see Spelling correction), a history mechanism (see History substitution), job con?

 trol (see Jobs) and a C-like syntax. The NEW FEATURES section describes major enhance?

 ments of tcsh over csh(1). Throughout this manual, features of tcsh not found in most

 csh(1) implementations (specifically, the 4.4BSD csh) are labeled with `(+)', and features

 which are present in csh(1) but not usually documented are labeled with `(u)'.

 Argument list processing

 If the first argument (argument 0) to the shell is `-' then it is a login shell. A login

 shell can be also specified by invoking the shell with the -l flag as the only argument.

 The rest of the flag arguments are interpreted as follows:

 -b Forces a ``break'' from option processing, causing any further shell arguments to be

 treated as non-option arguments. The remaining arguments will not be interpreted as

 shell options. This may be used to pass options to a shell script without confusion Page 1/95

 or possible subterfuge. The shell will not run a set-user ID script without this op?

 tion.

 -c Commands are read from the following argument (which must be present, and must be a

 single argument), stored in the command shell variable for reference, and executed.

 Any remaining arguments are placed in the argv shell variable.

 -d The shell loads the directory stack from ~/.cshdirs as described under Startup and

 shutdown, whether or not it is a login shell. (+)

 -Dname[=value]

 Sets the environment variable name to value. (Domain/OS only) (+)

 -e The shell exits if any invoked command terminates abnormally or yields a non-zero exit

 status.

 -f The shell does not load any resource or startup files, or perform any command hashing,

 and thus starts faster.

 -F The shell uses fork(2) instead of vfork(2) to spawn processes. (+)

 -i The shell is interactive and prompts for its top-level input, even if it appears to

 not be a terminal. Shells are interactive without this option if their inputs and

 outputs are terminals.

 -l The shell is a login shell. Applicable only if -l is the only flag specified.

 -m The shell loads ~/.tcshrc even if it does not belong to the effective user. Newer

 versions of su(1) can pass -m to the shell. (+)

 -n The shell parses commands but does not execute them. This aids in debugging shell

 scripts.

 -q The shell accepts SIGQUIT (see Signal handling) and behaves when it is used under a

 debugger. Job control is disabled. (u)

 -s Command input is taken from the standard input.

 -t The shell reads and executes a single line of input. A `\' may be used to escape the

 newline at the end of this line and continue onto another line.

 -v Sets the verbose shell variable, so that command input is echoed after history substi?

 tution.

 -x Sets the echo shell variable, so that commands are echoed immediately before execu?

 tion.

 -V Sets the verbose shell variable even before executing ~/.tcshrc.

 -X Is to -x as -V is to -v. Page 2/95

 --help

 Print a help message on the standard output and exit. (+)

 --version

 Print the version/platform/compilation options on the standard output and exit. This

 information is also contained in the version shell variable. (+)

 After processing of flag arguments, if arguments remain but none of the -c, -i, -s, or -t

 options were given, the first argument is taken as the name of a file of commands, or

 ``script'', to be executed. The shell opens this file and saves its name for possible re?

 substitution by `$0'. Because many systems use either the standard version 6 or version 7

 shells whose shell scripts are not compatible with this shell, the shell uses such a

 `standard' shell to execute a script whose first character is not a `#', i.e., that does

 not start with a comment.

 Remaining arguments are placed in the argv shell variable.

 Startup and shutdown

 A login shell begins by executing commands from the system files /etc/csh.cshrc and

 /etc/csh.login. It then executes commands from files in the user's home directory: first

 ~/.tcshrc (+) or, if ~/.tcshrc is not found, ~/.cshrc, then the contents of ~/.history (or

 the value of the histfile shell variable) are loaded into memory, then ~/.login, and fi?

 nally ~/.cshdirs (or the value of the dirsfile shell variable) (+). The shell may read

 /etc/csh.login before instead of after /etc/csh.cshrc, and ~/.login before instead of af?

 ter ~/.tcshrc or ~/.cshrc and ~/.history, if so compiled; see the version shell variable.

 (+)

 Non-login shells read only /etc/csh.cshrc and ~/.tcshrc or ~/.cshrc on startup.

 For examples of startup files, please consult http://tcshrc.sourceforge.net.

 Commands like stty(1) and tset(1), which need be run only once per login, usually go in

 one's ~/.login file. Users who need to use the same set of files with both csh(1) and

 tcsh can have only a ~/.cshrc which checks for the existence of the tcsh shell variable

 (q.v.) before using tcsh-specific commands, or can have both a ~/.cshrc and a ~/.tcshrc

 which sources (see the builtin command) ~/.cshrc. The rest of this manual uses `~/.tc?

 shrc' to mean `~/.tcshrc or, if ~/.tcshrc is not found, ~/.cshrc'.

 In the normal case, the shell begins reading commands from the terminal, prompting with `>

 '. (Processing of arguments and the use of the shell to process files containing command

 scripts are described later.) The shell repeatedly reads a line of command input, breaks Page 3/95

 it into words, places it on the command history list, parses it and executes each command

 in the line.

 One can log out by typing `^D' on an empty line, `logout' or `login' or via the shell's

 autologout mechanism (see the autologout shell variable). When a login shell terminates

 it sets the logout shell variable to `normal' or `automatic' as appropriate, then executes

 commands from the files /etc/csh.logout and ~/.logout. The shell may drop DTR on logout

 if so compiled; see the version shell variable.

 The names of the system login and logout files vary from system to system for compatibil?

 ity with different csh(1) variants; see FILES.

 Editing

 We first describe The command-line editor. The Completion and listing and Spelling cor?

 rection sections describe two sets of functionality that are implemented as editor com?

 mands but which deserve their own treatment. Finally, Editor commands lists and describes

 the editor commands specific to the shell and their default bindings.

 The command-line editor (+)

 Command-line input can be edited using key sequences much like those used in emacs(1) or

 vi(1). The editor is active only when the edit shell variable is set, which it is by de?

 fault in interactive shells. The bindkey builtin can display and change key bindings.

 emacs(1)-style key bindings are used by default (unless the shell was compiled otherwise;

 see the version shell variable), but bindkey can change the key bindings to vi(1)-style

 bindings en masse.

 The shell always binds the arrow keys (as defined in the TERMCAP environment variable) to

 down down-history

 up up-history

 left backward-char

 right forward-char

 unless doing so would alter another single-character binding. One can set the arrow key

 escape sequences to the empty string with settc to prevent these bindings. The ANSI/VT100

 sequences for arrow keys are always bound.

 Other key bindings are, for the most part, what emacs(1) and vi(1) users would expect and

 can easily be displayed by bindkey, so there is no need to list them here. Likewise,

 bindkey can list the editor commands with a short description of each. Certain key bind?

 ings have different behavior depending if emacs(1) or vi(1) style bindings are being used; Page 4/95

 see vimode for more information.

 Note that editor commands do not have the same notion of a ``word'' as does the shell.

 The editor delimits words with any non-alphanumeric characters not in the shell variable

 wordchars, while the shell recognizes only whitespace and some of the characters with spe?

 cial meanings to it, listed under Lexical structure.

 Completion and listing (+)

 The shell is often able to complete words when given a unique abbreviation. Type part of

 a word (for example `ls /usr/lost') and hit the tab key to run the complete-word editor

 command. The shell completes the filename `/usr/lost' to `/usr/lost+found/', replacing

 the incomplete word with the complete word in the input buffer. (Note the terminal `/';

 completion adds a `/' to the end of completed directories and a space to the end of other

 completed words, to speed typing and provide a visual indicator of successful completion.

 The addsuffix shell variable can be unset to prevent this.) If no match is found (perhaps

 `/usr/lost+found' doesn't exist), the terminal bell rings. If the word is already com?

 plete (perhaps there is a `/usr/lost' on your system, or perhaps you were thinking too far

 ahead and typed the whole thing) a `/' or space is added to the end if it isn't already

 there.

 Completion works anywhere in the line, not at just the end; completed text pushes the rest

 of the line to the right. Completion in the middle of a word often results in leftover

 characters to the right of the cursor that need to be deleted.

 Commands and variables can be completed in much the same way. For example, typing

 `em[tab]' would complete `em' to `emacs' if emacs were the only command on your system be?

 ginning with `em'. Completion can find a command in any directory in path or if given a

 full pathname. Typing `echo $ar[tab]' would complete `$ar' to `$argv' if no other vari?

 able began with `ar'.

 The shell parses the input buffer to determine whether the word you want to complete

 should be completed as a filename, command or variable. The first word in the buffer and

 the first word following `;', `|', `|&', `&&' or `||' is considered to be a command. A

 word beginning with `$' is considered to be a variable. Anything else is a filename. An

 empty line is `completed' as a filename.

 You can list the possible completions of a word at any time by typing `^D' to run the

 delete-char-or-list-or-eof editor command. The shell lists the possible completions using

 the ls-F builtin (q.v.) and reprints the prompt and unfinished command line, for example: Page 5/95

 > ls /usr/l[^D]

 lbin/ lib/ local/ lost+found/

 > ls /usr/l

 If the autolist shell variable is set, the shell lists the remaining choices (if any)

 whenever completion fails:

 > set autolist

 > nm /usr/lib/libt[tab]

 libtermcap.a@ libtermlib.a@

 > nm /usr/lib/libterm

 If autolist is set to `ambiguous', choices are listed only when completion fails and adds

 no new characters to the word being completed.

 A filename to be completed can contain variables, your own or others' home directories ab?

 breviated with `~' (see Filename substitution) and directory stack entries abbreviated

 with `=' (see Directory stack substitution). For example,

 > ls ~k[^D]

 kahn kas kellogg

 > ls ~ke[tab]

 > ls ~kellogg/

 or

 > set local = /usr/local

 > ls $lo[tab]

 > ls $local/[^D]

 bin/ etc/ lib/ man/ src/

 > ls $local/

 Note that variables can also be expanded explicitly with the expand-variables editor com?

 mand.

 delete-char-or-list-or-eof lists at only the end of the line; in the middle of a line it

 deletes the character under the cursor and on an empty line it logs one out or, if ig?

 noreeof is set, does nothing. `M-^D', bound to the editor command list-choices, lists

 completion possibilities anywhere on a line, and list-choices (or any one of the related

 editor commands that do or don't delete, list and/or log out, listed under delete-char-or-

 list-or-eof) can be bound to `^D' with the bindkey builtin command if so desired.

 The complete-word-fwd and complete-word-back editor commands (not bound to any keys by de? Page 6/95

 fault) can be used to cycle up and down through the list of possible completions, replac?

 ing the current word with the next or previous word in the list.

 The shell variable fignore can be set to a list of suffixes to be ignored by completion.

 Consider the following:

 > ls

 Makefile condiments.h~ main.o side.c

 README main.c meal side.o

 condiments.h main.c~

 > set fignore = (.o \~)

 > emacs ma[^D]

 main.c main.c~ main.o

 > emacs ma[tab]

 > emacs main.c

 `main.c~' and `main.o' are ignored by completion (but not listing), because they end in

 suffixes in fignore. Note that a `\' was needed in front of `~' to prevent it from being

 expanded to home as described under Filename substitution. fignore is ignored if only one

 completion is possible.

 If the complete shell variable is set to `enhance', completion 1) ignores case and 2) con?

 siders periods, hyphens and underscores (`.', `-' and `_') to be word separators and hy?

 phens and underscores to be equivalent. If you had the following files

 comp.lang.c comp.lang.perl comp.std.c++

 comp.lang.c++ comp.std.c

 and typed `mail -f c.l.c[tab]', it would be completed to `mail -f comp.lang.c', and ^D

 would list `comp.lang.c' and `comp.lang.c++'. `mail -f c..c++[^D]' would list

 `comp.lang.c++' and `comp.std.c++'. Typing `rm a--file[^D]' in the following directory

 A_silly_file a-hyphenated-file another_silly_file

 would list all three files, because case is ignored and hyphens and underscores are equiv?

 alent. Periods, however, are not equivalent to hyphens or underscores.

 If the complete shell variable is set to `Enhance', completion ignores case and differ?

 ences between a hyphen and an underscore word separator only when the user types a lower?

 case character or a hyphen. Entering an uppercase character or an underscore will not

 match the corresponding lowercase character or hyphen word separator. Typing `rm

 a--file[^D]' in the directory of the previous example would still list all three files, Page 7/95

 but typing `rm A--file' would match only `A_silly_file' and typing `rm a__file[^D]' would

 match just `A_silly_file' and `another_silly_file' because the user explicitly used an up?

 percase or an underscore character.

 Completion and listing are affected by several other shell variables: recexact can be set

 to complete on the shortest possible unique match, even if more typing might result in a

 longer match:

 > ls

 fodder foo food foonly

 > set recexact

 > rm fo[tab]

 just beeps, because `fo' could expand to `fod' or `foo', but if we type another `o',

 > rm foo[tab]

 > rm foo

 the completion completes on `foo', even though `food' and `foonly' also match. autoexpand

 can be set to run the expand-history editor command before each completion attempt, auto?

 correct can be set to spelling-correct the word to be completed (see Spelling correction)

 before each completion attempt and correct can be set to complete commands automatically

 after one hits `return'. matchbeep can be set to make completion beep or not beep in a

 variety of situations, and nobeep can be set to never beep at all. nostat can be set to a

 list of directories and/or patterns that match directories to prevent the completion mech?

 anism from stat(2)ing those directories. listmax and listmaxrows can be set to limit the

 number of items and rows (respectively) that are listed without asking first. recog?

 nize_only_executables can be set to make the shell list only executables when listing com?

 mands, but it is quite slow.

 Finally, the complete builtin command can be used to tell the shell how to complete words

 other than filenames, commands and variables. Completion and listing do not work on glob-

 patterns (see Filename substitution), but the list-glob and expand-glob editor commands

 perform equivalent functions for glob-patterns.

 Spelling correction (+)

 The shell can sometimes correct the spelling of filenames, commands and variable names as

 well as completing and listing them.

 Individual words can be spelling-corrected with the spell-word editor command (usually

 bound to M-s and M-S) and the entire input buffer with spell-line (usually bound to M-$). Page 8/95

 The correct shell variable can be set to `cmd' to correct the command name or `all' to

 correct the entire line each time return is typed, and autocorrect can be set to correct

 the word to be completed before each completion attempt.

 When spelling correction is invoked in any of these ways and the shell thinks that any

 part of the command line is misspelled, it prompts with the corrected line:

 > set correct = cmd

 > lz /usr/bin

 CORRECT>ls /usr/bin (y|n|e|a)?

 One can answer `y' or space to execute the corrected line, `e' to leave the uncorrected

 command in the input buffer, `a' to abort the command as if `^C' had been hit, and any?

 thing else to execute the original line unchanged.

 Spelling correction recognizes user-defined completions (see the complete builtin com?

 mand). If an input word in a position for which a completion is defined resembles a word

 in the completion list, spelling correction registers a misspelling and suggests the lat?

 ter word as a correction. However, if the input word does not match any of the possible

 completions for that position, spelling correction does not register a misspelling.

 Like completion, spelling correction works anywhere in the line, pushing the rest of the

 line to the right and possibly leaving extra characters to the right of the cursor.

 Editor commands (+)

 `bindkey' lists key bindings and `bindkey -l' lists and briefly describes editor commands.

 Only new or especially interesting editor commands are described here. See emacs(1) and

 vi(1) for descriptions of each editor's key bindings.

 The character or characters to which each command is bound by default is given in paren?

 theses. `^character' means a control character and `M-character' a meta character, typed

 as escape-character on terminals without a meta key. Case counts, but commands that are

 bound to letters by default are bound to both lower- and uppercase letters for conve?

 nience.

 backward-char (^B, left)

 Move back a character. Cursor behavior modified by vimode.

 backward-delete-word (M-^H, M-^?)

 Cut from beginning of current word to cursor - saved in cut buffer. Word boundary

 behavior modified by vimode.

 backward-word (M-b, M-B) Page 9/95

 Move to beginning of current word. Word boundary and cursor behavior modified by

 vimode.

 beginning-of-line (^A, home)

 Move to beginning of line. Cursor behavior modified by vimode.

 capitalize-word (M-c, M-C)

 Capitalize the characters from cursor to end of current word. Word boundary be?

 havior modified by vimode.

 complete-word (tab)

 Completes a word as described under Completion and listing.

 complete-word-back (not bound)

 Like complete-word-fwd, but steps up from the end of the list.

 complete-word-fwd (not bound)

 Replaces the current word with the first word in the list of possible completions.

 May be repeated to step down through the list. At the end of the list, beeps and

 reverts to the incomplete word.

 complete-word-raw (^X-tab)

 Like complete-word, but ignores user-defined completions.

 copy-prev-word (M-^_)

 Copies the previous word in the current line into the input buffer. See also in?

 sert-last-word. Word boundary behavior modified by vimode.

 dabbrev-expand (M-/)

 Expands the current word to the most recent preceding one for which the current is

 a leading substring, wrapping around the history list (once) if necessary. Re?

 peating dabbrev-expand without any intervening typing changes to the next previous

 word etc., skipping identical matches much like history-search-backward does.

 delete-char (bound to `Del' if using the standard /etc/csh.cshrc)

 Deletes the character under the cursor. See also delete-char-or-list-or-eof.

 Cursor behavior modified by vimode.

 delete-char-or-eof (not bound)

 Does delete-char if there is a character under the cursor or end-of-file on an

 empty line. See also delete-char-or-list-or-eof. Cursor behavior modified by vi?

 mode.

 delete-char-or-list (not bound) Page 10/95

 Does delete-char if there is a character under the cursor or list-choices at the

 end of the line. See also delete-char-or-list-or-eof.

 delete-char-or-list-or-eof (^D)

 Does delete-char if there is a character under the cursor, list-choices at the end

 of the line or end-of-file on an empty line. See also those three commands, each

 of which does only a single action, and delete-char-or-eof, delete-char-or-list

 and list-or-eof, each of which does a different two out of the three.

 delete-word (M-d, M-D)

 Cut from cursor to end of current word - save in cut buffer. Word boundary behav?

 ior modified by vimode.

 down-history (down-arrow, ^N)

 Like up-history, but steps down, stopping at the original input line.

 downcase-word (M-l, M-L)

 Lowercase the characters from cursor to end of current word. Word boundary behav?

 ior modified by vimode.

 end-of-file (not bound)

 Signals an end of file, causing the shell to exit unless the ignoreeof shell vari?

 able (q.v.) is set to prevent this. See also delete-char-or-list-or-eof.

 end-of-line (^E, end)

 Move cursor to end of line. Cursor behavior modified by vimode.

 expand-history (M-space)

 Expands history substitutions in the current word. See History substitution. See

 also magic-space, toggle-literal-history and the autoexpand shell variable.

 expand-glob (^X-*)

 Expands the glob-pattern to the left of the cursor. See Filename substitution.

 expand-line (not bound)

 Like expand-history, but expands history substitutions in each word in the input

 buffer.

 expand-variables (^X-$)

 Expands the variable to the left of the cursor. See Variable substitution.

 forward-char (^F, right)

 Move forward one character. Cursor behavior modified by vimode.

 forward-word (M-f, M-F) Page 11/95

 Move forward to end of current word. Word boundary and cursor behavior modified

 by vimode.

 history-search-backward (M-p, M-P)

 Searches backwards through the history list for a command beginning with the cur?

 rent contents of the input buffer up to the cursor and copies it into the input

 buffer. The search string may be a glob-pattern (see Filename substitution) con?

 taining `*', `?', `[]' or `{}'. up-history and down-history will proceed from the

 appropriate point in the history list. Emacs mode only. See also history-search-

 forward and i-search-back.

 history-search-forward (M-n, M-N)

 Like history-search-backward, but searches forward.

 i-search-back (not bound)

 Searches backward like history-search-backward, copies the first match into the

 input buffer with the cursor positioned at the end of the pattern, and prompts

 with `bck: ' and the first match. Additional characters may be typed to extend

 the search, i-search-back may be typed to continue searching with the same pat?

 tern, wrapping around the history list if necessary, (i-search-back must be bound

 to a single character for this to work) or one of the following special characters

 may be typed:

 ^W Appends the rest of the word under the cursor to the search pattern.

 delete (or any character bound to backward-delete-char)

 Undoes the effect of the last character typed and deletes a character

 from the search pattern if appropriate.

 ^G If the previous search was successful, aborts the entire search. If

 not, goes back to the last successful search.

 escape Ends the search, leaving the current line in the input buffer.

 Any other character not bound to self-insert-command terminates the search, leav?

 ing the current line in the input buffer, and is then interpreted as normal input.

 In particular, a carriage return causes the current line to be executed. See also

 i-search-fwd and history-search-backward. Word boundary behavior modified by vi?

 mode.

 i-search-fwd (not bound)

 Like i-search-back, but searches forward. Word boundary behavior modified by vi? Page 12/95

 mode.

 insert-last-word (M-_)

 Inserts the last word of the previous input line (`!$') into the input buffer.

 See also copy-prev-word.

 list-choices (M-^D)

 Lists completion possibilities as described under Completion and listing. See

 also delete-char-or-list-or-eof and list-choices-raw.

 list-choices-raw (^X-^D)

 Like list-choices, but ignores user-defined completions.

 list-glob (^X-g, ^X-G)

 Lists (via the ls-F builtin) matches to the glob-pattern (see Filename substitu?

 tion) to the left of the cursor.

 list-or-eof (not bound)

 Does list-choices or end-of-file on an empty line. See also delete-char-or-list-

 or-eof.

 magic-space (not bound)

 Expands history substitutions in the current line, like expand-history, and in?

 serts a space. magic-space is designed to be bound to the space bar, but is not

 bound by default.

 normalize-command (^X-?)

 Searches for the current word in PATH and, if it is found, replaces it with the

 full path to the executable. Special characters are quoted. Aliases are expanded

 and quoted but commands within aliases are not. This command is useful with com?

 mands that take commands as arguments, e.g., `dbx' and `sh -x'.

 normalize-path (^X-n, ^X-N)

 Expands the current word as described under the `expand' setting of the symlinks

 shell variable.

 overwrite-mode (unbound)

 Toggles between input and overwrite modes.

 run-fg-editor (M-^Z)

 Saves the current input line and looks for a stopped job where the file name por?

 tion of its first word is found in the editors shell variable. If editors is not

 set, then the file name portion of the EDITOR environment variable (`ed' if unset) Page 13/95

 and the VISUAL environment variable (`vi' if unset) will be used. If such a job

 is found, it is restarted as if `fg %job' had been typed. This is used to toggle

 back and forth between an editor and the shell easily. Some people bind this com?

 mand to `^Z' so they can do this even more easily.

 run-help (M-h, M-H)

 Searches for documentation on the current command, using the same notion of `cur?

 rent command' as the completion routines, and prints it. There is no way to use a

 pager; run-help is designed for short help files. If the special alias helpcom?

 mand is defined, it is run with the command name as a sole argument. Else, docu?

 mentation should be in a file named command.help, command.1, command.6, command.8

 or command, which should be in one of the directories listed in the HPATH environ?

 ment variable. If there is more than one help file only the first is printed.

 self-insert-command (text characters)

 In insert mode (the default), inserts the typed character into the input line af?

 ter the character under the cursor. In overwrite mode, replaces the character un?

 der the cursor with the typed character. The input mode is normally preserved be?

 tween lines, but the inputmode shell variable can be set to `insert' or `over?

 write' to put the editor in that mode at the beginning of each line. See also

 overwrite-mode.

 sequence-lead-in (arrow prefix, meta prefix, ^X)

 Indicates that the following characters are part of a multi-key sequence. Binding

 a command to a multi-key sequence really creates two bindings: the first character

 to sequence-lead-in and the whole sequence to the command. All sequences begin?

 ning with a character bound to sequence-lead-in are effectively bound to unde?

 fined-key unless bound to another command.

 spell-line (M-$)

 Attempts to correct the spelling of each word in the input buffer, like spell-

 word, but ignores words whose first character is one of `-', `!', `^' or `%', or

 which contain `\', `*' or `?', to avoid problems with switches, substitutions and

 the like. See Spelling correction.

 spell-word (M-s, M-S)

 Attempts to correct the spelling of the current word as described under Spelling

 correction. Checks each component of a word which appears to be a pathname. Page 14/95

 toggle-literal-history (M-r, M-R)

 Expands or `unexpands' history substitutions in the input buffer. See also ex?

 pand-history and the autoexpand shell variable.

 undefined-key (any unbound key)

 Beeps.

 up-history (up-arrow, ^P)

 Copies the previous entry in the history list into the input buffer. If histlit

 is set, uses the literal form of the entry. May be repeated to step up through

 the history list, stopping at the top.

 upcase-word (M-u, M-U)

 Uppercase the characters from cursor to end of current word. Word boundary behav?

 ior modified by vimode.

 vi-beginning-of-next-word (not bound)

 Vi goto the beginning of next word. Word boundary and cursor behavior modified by

 vimode.

 vi-eword (not bound)

 Vi move to the end of the current word. Word boundary behavior modified by vi?

 mode.

 vi-search-back (?)

 Prompts with `?' for a search string (which may be a glob-pattern, as with his?

 tory-search-backward), searches for it and copies it into the input buffer. The

 bell rings if no match is found. Hitting return ends the search and leaves the

 last match in the input buffer. Hitting escape ends the search and executes the

 match. vi mode only.

 vi-search-fwd (/)

 Like vi-search-back, but searches forward.

 which-command (M-?)

 Does a which (see the description of the builtin command) on the first word of the

 input buffer.

 yank-pop (M-y)

 When executed immediately after a yank or another yank-pop, replaces the yanked

 string with the next previous string from the killring. This also has the effect

 of rotating the killring, such that this string will be considered the most re? Page 15/95

 cently killed by a later yank command. Repeating yank-pop will cycle through the

 killring any number of times.

 Lexical structure

 The shell splits input lines into words at blanks and tabs. The special characters `&',

 `|', `;', `<', `>', `(', and `)' and the doubled characters `&&', `||', `<<' and `>>' are

 always separate words, whether or not they are surrounded by whitespace.

 When the shell's input is not a terminal, the character `#' is taken to begin a comment.

 Each `#' and the rest of the input line on which it appears is discarded before further

 parsing.

 A special character (including a blank or tab) may be prevented from having its special

 meaning, and possibly made part of another word, by preceding it with a backslash (`\') or

 enclosing it in single (`''), double (`"') or backward (``') quotes. When not otherwise

 quoted a newline preceded by a `\' is equivalent to a blank, but inside quotes this se?

 quence results in a newline.

 Furthermore, all Substitutions (see below) except History substitution can be prevented by

 enclosing the strings (or parts of strings) in which they appear with single quotes or by

 quoting the crucial character(s) (e.g., `$' or ``' for Variable substitution or Command

 substitution respectively) with `\'. (Alias substitution is no exception: quoting in any

 way any character of a word for which an alias has been defined prevents substitution of

 the alias. The usual way of quoting an alias is to precede it with a backslash.) History

 substitution is prevented by backslashes but not by single quotes. Strings quoted with

 double or backward quotes undergo Variable substitution and Command substitution, but

 other substitutions are prevented.

 Text inside single or double quotes becomes a single word (or part of one). Metacharac?

 ters in these strings, including blanks and tabs, do not form separate words. Only in one

 special case (see Command substitution below) can a double-quoted string yield parts of

 more than one word; single-quoted strings never do. Backward quotes are special: they

 signal Command substitution (q.v.), which may result in more than one word.

 Quoting complex strings, particularly strings which themselves contain quoting characters,

 can be confusing. Remember that quotes need not be used as they are in human writing! It

 may be easier to quote not an entire string, but only those parts of the string which need

 quoting, using different types of quoting to do so if appropriate.

 The backslash_quote shell variable (q.v.) can be set to make backslashes always quote `\', Page 16/95

 `'', and `"'. (+) This may make complex quoting tasks easier, but it can cause syntax er?

 rors in csh(1) scripts.

 Substitutions

 We now describe the various transformations the shell performs on the input in the order

 in which they occur. We note in passing the data structures involved and the commands and

 variables which affect them. Remember that substitutions can be prevented by quoting as

 described under Lexical structure.

 History substitution

 Each command, or ``event'', input from the terminal is saved in the history list. The

 previous command is always saved, and the history shell variable can be set to a number to

 save that many commands. The histdup shell variable can be set to not save duplicate

 events or consecutive duplicate events.

 Saved commands are numbered sequentially from 1 and stamped with the time. It is not usu?

 ally necessary to use event numbers, but the current event number can be made part of the

 prompt by placing an `!' in the prompt shell variable.

 The shell actually saves history in expanded and literal (unexpanded) forms. If the

 histlit shell variable is set, commands that display and store history use the literal

 form.

 The history builtin command can print, store in a file, restore and clear the history list

 at any time, and the savehist and histfile shell variables can be set to store the history

 list automatically on logout and restore it on login.

 History substitutions introduce words from the history list into the input stream, making

 it easy to repeat commands, repeat arguments of a previous command in the current command,

 or fix spelling mistakes in the previous command with little typing and a high degree of

 confidence.

 History substitutions begin with the character `!'. They may begin anywhere in the input

 stream, but they do not nest. The `!' may be preceded by a `\' to prevent its special

 meaning; for convenience, a `!' is passed unchanged when it is followed by a blank, tab,

 newline, `=' or `('. History substitutions also occur when an input line begins with `^'.

 This special abbreviation will be described later. The characters used to signal history

 substitution (`!' and `^') can be changed by setting the histchars shell variable. Any

 input line which contains a history substitution is printed before it is executed.

 A history substitution may have an ``event specification'', which indicates the event from Page 17/95

 which words are to be taken, a ``word designator'', which selects particular words from

 the chosen event, and/or a ``modifier'', which manipulates the selected words.

 An event specification can be

 n A number, referring to a particular event

 -n An offset, referring to the event n before the current event

 # The current event. This should be used carefully in csh(1), where there is no

 check for recursion. tcsh allows 10 levels of recursion. (+)

 ! The previous event (equivalent to `-1')

 s The most recent event whose first word begins with the string s

 ?s? The most recent event which contains the string s. The second `?' can be

 omitted if it is immediately followed by a newline.

 For example, consider this bit of someone's history list:

 9 8:30 nroff -man wumpus.man

 10 8:31 cp wumpus.man wumpus.man.old

 11 8:36 vi wumpus.man

 12 8:37 diff wumpus.man.old wumpus.man

 The commands are shown with their event numbers and time stamps. The current event, which

 we haven't typed in yet, is event 13. `!11' and `!-2' refer to event 11. `!!' refers to

 the previous event, 12. `!!' can be abbreviated `!' if it is followed by `:' (`:' is de?

 scribed below). `!n' refers to event 9, which begins with `n'. `!?old?' also refers to

 event 12, which contains `old'. Without word designators or modifiers history references

 simply expand to the entire event, so we might type `!cp' to redo the copy command or

 `!!|more' if the `diff' output scrolled off the top of the screen.

 History references may be insulated from the surrounding text with braces if necessary.

 For example, `!vdoc' would look for a command beginning with `vdoc', and, in this example,

 not find one, but `!{v}doc' would expand unambiguously to `vi wumpus.mandoc'. Even in

 braces, history substitutions do not nest.

 (+) While csh(1) expands, for example, `!3d' to event 3 with the letter `d' appended to

 it, tcsh expands it to the last event beginning with `3d'; only completely numeric argu?

 ments are treated as event numbers. This makes it possible to recall events beginning

 with numbers. To expand `!3d' as in csh(1) say `!{3}d'.

 To select words from an event we can follow the event specification by a `:' and a desig?

 nator for the desired words. The words of an input line are numbered from 0, the first Page 18/95

 (usually command) word being 0, the second word (first argument) being 1, etc. The basic

 word designators are:

 0 The first (command) word

 n The nth argument

 ^ The first argument, equivalent to `1'

 $ The last argument

 % The word matched by an ?s? search

 x-y A range of words

 -y Equivalent to `0-y'

 * Equivalent to `^-$', but returns nothing if the event contains only 1 word

 x* Equivalent to `x-$'

 x- Equivalent to `x*', but omitting the last word (`$')

 Selected words are inserted into the command line separated by single blanks. For exam?

 ple, the `diff' command in the previous example might have been typed as `diff !!:1.old

 !!:1' (using `:1' to select the first argument from the previous event) or `diff !-2:2

 !-2:1' to select and swap the arguments from the `cp' command. If we didn't care about

 the order of the `diff' we might have said `diff !-2:1-2' or simply `diff !-2:*'. The

 `cp' command might have been written `cp wumpus.man !#:1.old', using `#' to refer to the

 current event. `!n:- hurkle.man' would reuse the first two words from the `nroff' command

 to say `nroff -man hurkle.man'.

 The `:' separating the event specification from the word designator can be omitted if the

 argument selector begins with a `^', `$', `*', `%' or `-'. For example, our `diff' com?

 mand might have been `diff !!^.old !!^' or, equivalently, `diff !!$.old !!$'. However, if

 `!!' is abbreviated `!', an argument selector beginning with `-' will be interpreted as an

 event specification.

 A history reference may have a word designator but no event specification. It then refer?

 ences the previous command. Continuing our `diff' example, we could have said simply

 `diff !^.old !^' or, to get the arguments in the opposite order, just `diff !*'.

 The word or words in a history reference can be edited, or ``modified'', by following it

 with one or more modifiers, each preceded by a `:':

 h Remove a trailing pathname component, leaving the head.

 t Remove all leading pathname components, leaving the tail.

 r Remove a filename extension `.xxx', leaving the root name. Page 19/95

 e Remove all but the extension.

 u Uppercase the first lowercase letter.

 l Lowercase the first uppercase letter.

 s/l/r/ Substitute l for r. l is simply a string like r, not a regular expression as

 in the eponymous ed(1) command. Any character may be used as the delimiter in

 place of `/'; a `\' can be used to quote the delimiter inside l and r. The

 character `&' in the r is replaced by l; `\' also quotes `&'. If l is empty

 (``''), the l from a previous substitution or the s from a previous search or

 event number in event specification is used. The trailing delimiter may be

 omitted if it is immediately followed by a newline.

 & Repeat the previous substitution.

 g Apply the following modifier once to each word.

 a (+) Apply the following modifier as many times as possible to a single word. `a'

 and `g' can be used together to apply a modifier globally. With the `s' modi?

 fier, only the patterns contained in the original word are substituted, not

 patterns that contain any substitution result.

 p Print the new command line but do not execute it.

 q Quote the substituted words, preventing further substitutions.

 x Like q, but break into words at blanks, tabs and newlines.

 Modifiers are applied to only the first modifiable word (unless `g' is used). It is an

 error for no word to be modifiable.

 For example, the `diff' command might have been written as `diff wumpus.man.old !#^:r',

 using `:r' to remove `.old' from the first argument on the same line (`!#^'). We could

 say `echo hello out there', then `echo !*:u' to capitalize `hello', `echo !*:au' to say it

 out loud, or `echo !*:agu' to really shout. We might follow `mail -s "I forgot my pass?

 word" rot' with `!:s/rot/root' to correct the spelling of `root' (but see Spelling correc?

 tion for a different approach).

 There is a special abbreviation for substitutions. `^', when it is the first character on

 an input line, is equivalent to `!:s^'. Thus we might have said `^rot^root' to make the

 spelling correction in the previous example. This is the only history substitution which

 does not explicitly begin with `!'.

 (+) In csh as such, only one modifier may be applied to each history or variable expan?

 sion. In tcsh, more than one may be used, for example Page 20/95

 % mv wumpus.man /usr/man/man1/wumpus.1

 % man !$:t:r

 man wumpus

 In csh, the result would be `wumpus.1:r'. A substitution followed by a colon may need to

 be insulated from it with braces:

 > mv a.out /usr/games/wumpus

 > setenv PATH !$:h:$PATH

 Bad ! modifier: $.

 > setenv PATH !{-2$:h}:$PATH

 setenv PATH /usr/games:/bin:/usr/bin:.

 The first attempt would succeed in csh but fails in tcsh, because tcsh expects another

 modifier after the second colon rather than `$'.

 Finally, history can be accessed through the editor as well as through the substitutions

 just described. The up- and down-history, history-search-backward and -forward, i-search-

 back and -fwd, vi-search-back and -fwd, copy-prev-word and insert-last-word editor com?

 mands search for events in the history list and copy them into the input buffer. The tog?

 gle-literal-history editor command switches between the expanded and literal forms of his?

 tory lines in the input buffer. expand-history and expand-line expand history substitu?

 tions in the current word and in the entire input buffer respectively.

 Alias substitution

 The shell maintains a list of aliases which can be set, unset and printed by the alias and

 unalias commands. After a command line is parsed into simple commands (see Commands) the

 first word of each command, left-to-right, is checked to see if it has an alias. If so,

 the first word is replaced by the alias. If the alias contains a history reference, it

 undergoes History substitution (q.v.) as though the original command were the previous in?

 put line. If the alias does not contain a history reference, the argument list is left

 untouched.

 Thus if the alias for `ls' were `ls -l' the command `ls /usr' would become `ls -l /usr',

 the argument list here being undisturbed. If the alias for `lookup' were `grep !^

 /etc/passwd' then `lookup bill' would become `grep bill /etc/passwd'. Aliases can be used

 to introduce parser metasyntax. For example, `alias print 'pr \!* | lpr'' defines a

 ``command'' (`print') which pr(1)s its arguments to the line printer.

 Alias substitution is repeated until the first word of the command has no alias. If an Page 21/95

 alias substitution does not change the first word (as in the previous example) it is

 flagged to prevent a loop. Other loops are detected and cause an error.

 Some aliases are referred to by the shell; see Special aliases.

 Variable substitution

 The shell maintains a list of variables, each of which has as value a list of zero or more

 words. The values of shell variables can be displayed and changed with the set and unset

 commands. The system maintains its own list of ``environment'' variables. These can be

 displayed and changed with printenv, setenv and unsetenv.

 (+) Variables may be made read-only with `set -r' (q.v.). Read-only variables may not be

 modified or unset; attempting to do so will cause an error. Once made read-only, a vari?

 able cannot be made writable, so `set -r' should be used with caution. Environment vari?

 ables cannot be made read-only.

 Some variables are set by the shell or referred to by it. For instance, the argv variable

 is an image of the shell's argument list, and words of this variable's value are referred

 to in special ways. Some of the variables referred to by the shell are toggles; the shell

 does not care what their value is, only whether they are set or not. For instance, the

 verbose variable is a toggle which causes command input to be echoed. The -v command line

 option sets this variable. Special shell variables lists all variables which are referred

 to by the shell.

 Other operations treat variables numerically. The `@' command permits numeric calcula?

 tions to be performed and the result assigned to a variable. Variable values are, how?

 ever, always represented as (zero or more) strings. For the purposes of numeric opera?

 tions, the null string is considered to be zero, and the second and subsequent words of

 multi-word values are ignored.

 After the input line is aliased and parsed, and before each command is executed, variable

 substitution is performed keyed by `$' characters. This expansion can be prevented by

 preceding the `$' with a `\' except within `"'s where it always occurs, and within `''s

 where it never occurs. Strings quoted by ``' are interpreted later (see Command substitu?

 tion below) so `$' substitution does not occur there until later, if at all. A `$' is

 passed unchanged if followed by a blank, tab, or end-of-line.

 Input/output redirections are recognized before variable expansion, and are variable ex?

 panded separately. Otherwise, the command name and entire argument list are expanded to?

 gether. It is thus possible for the first (command) word (to this point) to generate more Page 22/95

 than one word, the first of which becomes the command name, and the rest of which become

 arguments.

 Unless enclosed in `"' or given the `:q' modifier the results of variable substitution may

 eventually be command and filename substituted. Within `"', a variable whose value con?

 sists of multiple words expands to a (portion of a) single word, with the words of the

 variable's value separated by blanks. When the `:q' modifier is applied to a substitution

 the variable will expand to multiple words with each word separated by a blank and quoted

 to prevent later command or filename substitution.

 The following metasequences are provided for introducing variable values into the shell

 input. Except as noted, it is an error to reference a variable which is not set.

 $name

 ${name} Substitutes the words of the value of variable name, each separated by a blank.

 Braces insulate name from following characters which would otherwise be part of

 it. Shell variables have names consisting of letters and digits starting with a

 letter. The underscore character is considered a letter. If name is not a shell

 variable, but is set in the environment, then that value is returned (but some of

 the other forms given below are not available in this case).

 $name[selector]

 ${name[selector]}

 Substitutes only the selected words from the value of name. The selector is sub?

 jected to `$' substitution and may consist of a single number or two numbers sepa?

 rated by a `-'. The first word of a variable's value is numbered `1'. If the

 first number of a range is omitted it defaults to `1'. If the last member of a

 range is omitted it defaults to `$#name'. The selector `*' selects all words. It

 is not an error for a range to be empty if the second argument is omitted or in

 range.

 $0 Substitutes the name of the file from which command input is being read. An error

 occurs if the name is not known.

 $number

 ${number}

 Equivalent to `$argv[number]'.

 $* Equivalent to `$argv', which is equivalent to `$argv[*]'.

 The `:' modifiers described under History substitution, except for `:p', can be applied to Page 23/95

 the substitutions above. More than one may be used. (+) Braces may be needed to insulate

 a variable substitution from a literal colon just as with History substitution (q.v.); any

 modifiers must appear within the braces.

 The following substitutions can not be modified with `:' modifiers.

 $?name

 ${?name}

 Substitutes the string `1' if name is set, `0' if it is not.

 $?0 Substitutes `1' if the current input filename is known, `0' if it is not. Always

 `0' in interactive shells.

 $#name

 ${#name}

 Substitutes the number of words in name.

 $# Equivalent to `$#argv'. (+)

 $%name

 ${%name}

 Substitutes the number of characters in name. (+)

 $%number

 ${%number}

 Substitutes the number of characters in $argv[number]. (+)

 $? Equivalent to `$status'. (+)

 $$ Substitutes the (decimal) process number of the (parent) shell.

 $! Substitutes the (decimal) process number of the last background process started by

 this shell. (+)

 $_ Substitutes the command line of the last command executed. (+)

 $< Substitutes a line from the standard input, with no further interpretation there?

 after. It can be used to read from the keyboard in a shell script. (+) While csh

 always quotes $<, as if it were equivalent to `$<:q', tcsh does not. Furthermore,

 when tcsh is waiting for a line to be typed the user may type an interrupt to in?

 terrupt the sequence into which the line is to be substituted, but csh does not

 allow this.

 The editor command expand-variables, normally bound to `^X-$', can be used to interac?

 tively expand individual variables.

 Command, filename and directory stack substitution Page 24/95

 The remaining substitutions are applied selectively to the arguments of builtin commands.

 This means that portions of expressions which are not evaluated are not subjected to these

 expansions. For commands which are not internal to the shell, the command name is substi?

 tuted separately from the argument list. This occurs very late, after input-output redi?

 rection is performed, and in a child of the main shell.

 Command substitution

 Command substitution is indicated by a command enclosed in ``'. The output from such a

 command is broken into separate words at blanks, tabs and newlines, and null words are

 discarded. The output is variable and command substituted and put in place of the origi?

 nal string.

 Command substitutions inside double quotes (`"') retain blanks and tabs; only newlines

 force new words. The single final newline does not force a new word in any case. It is

 thus possible for a command substitution to yield only part of a word, even if the command

 outputs a complete line.

 By default, the shell since version 6.12 replaces all newline and carriage return charac?

 ters in the command by spaces. If this is switched off by unsetting csubstnonl, newlines

 separate commands as usual.

 Filename substitution

 If a word contains any of the characters `*', `?', `[' or `{' or begins with the character

 `~' it is a candidate for filename substitution, also known as ``globbing''. This word is

 then regarded as a pattern (``glob-pattern''), and replaced with an alphabetically sorted

 list of file names which match the pattern.

 In matching filenames, the character `.' at the beginning of a filename or immediately

 following a `/', as well as the character `/' must be matched explicitly (unless either

 globdot or globstar or both are set(+)). The character `*' matches any string of charac?

 ters, including the null string. The character `?' matches any single character. The se?

 quence `[...]' matches any one of the characters enclosed. Within `[...]', a pair of

 characters separated by `-' matches any character lexically between the two.

 (+) Some glob-patterns can be negated: The sequence `[^...]' matches any single character

 not specified by the characters and/or ranges of characters in the braces.

 An entire glob-pattern can also be negated with `^':

 > echo *

 bang crash crunch ouch Page 25/95

 > echo ^cr*

 bang ouch

 Glob-patterns which do not use `?', `*', or `[]' or which use `{}' or `~' (below) are not

 negated correctly.

 The metanotation `a{b,c,d}e' is a shorthand for `abe ace ade'. Left-to-right order is

 preserved: `/usr/source/s1/{oldls,ls}.c' expands to `/usr/source/s1/oldls.c

 /usr/source/s1/ls.c'. The results of matches are sorted separately at a low level to pre?

 serve this order: `../{memo,*box}' might expand to `../memo ../box ../mbox'. (Note that

 `memo' was not sorted with the results of matching `*box'.) It is not an error when this

 construct expands to files which do not exist, but it is possible to get an error from a

 command to which the expanded list is passed. This construct may be nested. As a special

 case the words `{', `}' and `{}' are passed undisturbed.

 The character `~' at the beginning of a filename refers to home directories. Standing

 alone, i.e., `~', it expands to the invoker's home directory as reflected in the value of

 the home shell variable. When followed by a name consisting of letters, digits and `-'

 characters the shell searches for a user with that name and substitutes their home direc?

 tory; thus `~ken' might expand to `/usr/ken' and `~ken/chmach' to `/usr/ken/chmach'. If

 the character `~' is followed by a character other than a letter or `/' or appears else?

 where than at the beginning of a word, it is left undisturbed. A command like `setenv

 MANPATH /usr/man:/usr/local/man:~/lib/man' does not, therefore, do home directory substi?

 tution as one might hope.

 It is an error for a glob-pattern containing `*', `?', `[' or `~', with or without `^',

 not to match any files. However, only one pattern in a list of glob-patterns must match a

 file (so that, e.g., `rm *.a *.c *.o' would fail only if there were no files in the cur?

 rent directory ending in `.a', `.c', or `.o'), and if the nonomatch shell variable is set

 a pattern (or list of patterns) which matches nothing is left unchanged rather than caus?

 ing an error.

 The globstar shell variable can be set to allow `**' or `***' as a file glob pattern that

 matches any string of characters including `/', recursively traversing any existing sub-

 directories. For example, `ls **.c' will list all the .c files in the current directory

 tree. If used by itself, it will match zero or more sub-directories (e.g. `ls /usr/in?

 clude/**/time.h' will list any file named `time.h' in the /usr/include directory tree; `ls

 /usr/include/**time.h' will match any file in the /usr/include directory tree ending in Page 26/95

 `time.h'; and `ls /usr/include/**time**.h' will match any .h file with `time' either in a

 subdirectory name or in the filename itself). To prevent problems with recursion, the

 `**' glob-pattern will not descend into a symbolic link containing a directory. To over?

 ride this, use `***' (+)

 The noglob shell variable can be set to prevent filename substitution, and the expand-glob

 editor command, normally bound to `^X-*', can be used to interactively expand individual

 filename substitutions.

 Directory stack substitution (+)

 The directory stack is a list of directories, numbered from zero, used by the pushd, popd

 and dirs builtin commands (q.v.). dirs can print, store in a file, restore and clear the

 directory stack at any time, and the savedirs and dirsfile shell variables can be set to

 store the directory stack automatically on logout and restore it on login. The dirstack

 shell variable can be examined to see the directory stack and set to put arbitrary direc?

 tories into the directory stack.

 The character `=' followed by one or more digits expands to an entry in the directory

 stack. The special case `=-' expands to the last directory in the stack. For example,

 > dirs -v

 0 /usr/bin

 1 /usr/spool/uucp

 2 /usr/accts/sys

 > echo =1

 /usr/spool/uucp

 > echo =0/calendar

 /usr/bin/calendar

 > echo =-

 /usr/accts/sys

 The noglob and nonomatch shell variables and the expand-glob editor command apply to di?

 rectory stack as well as filename substitutions.

 Other substitutions (+)

 There are several more transformations involving filenames, not strictly related to the

 above but mentioned here for completeness. Any filename may be expanded to a full path

 when the symlinks variable (q.v.) is set to `expand'. Quoting prevents this expansion,

 and the normalize-path editor command does it on demand. The normalize-command editor Page 27/95

 command expands commands in PATH into full paths on demand. Finally, cd and pushd inter?

 pret `-' as the old working directory (equivalent to the shell variable owd). This is not

 a substitution at all, but an abbreviation recognized by only those commands. Nonethe?

 less, it too can be prevented by quoting.

 Commands

 The next three sections describe how the shell executes commands and deals with their in?

 put and output.

 Simple commands, pipelines and sequences

 A simple command is a sequence of words, the first of which specifies the command to be

 executed. A series of simple commands joined by `|' characters forms a pipeline. The

 output of each command in a pipeline is connected to the input of the next.

 Simple commands and pipelines may be joined into sequences with `;', and will be executed

 sequentially. Commands and pipelines can also be joined into sequences with `||' or `&&',

 indicating, as in the C language, that the second is to be executed only if the first

 fails or succeeds respectively.

 A simple command, pipeline or sequence may be placed in parentheses, `()', to form a sim?

 ple command, which may in turn be a component of a pipeline or sequence. A command, pipe?

 line or sequence can be executed without waiting for it to terminate by following it with

 an `&'.

 Builtin and non-builtin command execution

 Builtin commands are executed within the shell. If any component of a pipeline except the

 last is a builtin command, the pipeline is executed in a subshell.

 Parenthesized commands are always executed in a subshell.

 (cd; pwd); pwd

 thus prints the home directory, leaving you where you were (printing this after the home

 directory), while

 cd; pwd

 leaves you in the home directory. Parenthesized commands are most often used to prevent

 cd from affecting the current shell.

 When a command to be executed is found not to be a builtin command the shell attempts to

 execute the command via execve(2). Each word in the variable path names a directory in

 which the shell will look for the command. If the shell is not given a -f option, the

 shell hashes the names in these directories into an internal table so that it will try an Page 28/95

 execve(2) in only a directory where there is a possibility that the command resides there.

 This greatly speeds command location when a large number of directories are present in the

 search path. This hashing mechanism is not used:

 1. If hashing is turned explicitly off via unhash.

 2. If the shell was given a -f argument.

 3. For each directory component of path which does not begin with a `/'.

 4. If the command contains a `/'.

 In the above four cases the shell concatenates each component of the path vector with the

 given command name to form a path name of a file which it then attempts to execute it. If

 execution is successful, the search stops.

 If the file has execute permissions but is not an executable to the system (i.e., it is

 neither an executable binary nor a script that specifies its interpreter), then it is as?

 sumed to be a file containing shell commands and a new shell is spawned to read it. The

 shell special alias may be set to specify an interpreter other than the shell itself.

 On systems which do not understand the `#!' script interpreter convention the shell may be

 compiled to emulate it; see the version shell variable. If so, the shell checks the first

 line of the file to see if it is of the form `#!interpreter arg ...'. If it is, the shell

 starts interpreter with the given args and feeds the file to it on standard input.

 Input/output

 The standard input and standard output of a command may be redirected with the following

 syntax:

 < name Open file name (which is first variable, command and filename expanded) as the

 standard input.

 << word Read the shell input up to a line which is identical to word. word is not sub?

 jected to variable, filename or command substitution, and each input line is com?

 pared to word before any substitutions are done on this input line. Unless a

 quoting `\', `"', `' or ``' appears in word variable and command substitution is

 performed on the intervening lines, allowing `\' to quote `$', `\' and ``'. Com?

 mands which are substituted have all blanks, tabs, and newlines preserved, except

 for the final newline which is dropped. The resultant text is placed in an anony?

 mous temporary file which is given to the command as standard input.

 > name

 >! name Page 29/95

 >& name

 >&! name

 The file name is used as standard output. If the file does not exist then it is

 created; if the file exists, it is truncated, its previous contents being lost.

 If the shell variable noclobber is set, then the file must not exist or be a char?

 acter special file (e.g., a terminal or `/dev/null') or an error results. This

 helps prevent accidental destruction of files. In this case the `!' forms can be

 used to suppress this check. If notempty is given in noclobber, `>' is allowed on

 empty files; if ask is set, an interacive confirmation is presented, rather than

 an error.

 The forms involving `&' route the diagnostic output into the specified file as

 well as the standard output. name is expanded in the same way as `<' input file?

 names are.

 >> name

 >>& name

 >>! name

 >>&! name

 Like `>', but appends output to the end of name. If the shell variable noclobber

 is set, then it is an error for the file not to exist, unless one of the `!' forms

 is given.

 A command receives the environment in which the shell was invoked as modified by the in?

 put-output parameters and the presence of the command in a pipeline. Thus, unlike some

 previous shells, commands run from a file of shell commands have no access to the text of

 the commands by default; rather they receive the original standard input of the shell.

 The `<<' mechanism should be used to present inline data. This permits shell command

 scripts to function as components of pipelines and allows the shell to block read its in?

 put. Note that the default standard input for a command run detached is not the empty

 file /dev/null, but the original standard input of the shell. If this is a terminal and

 if the process attempts to read from the terminal, then the process will block and the

 user will be notified (see Jobs).

 Diagnostic output may be directed through a pipe with the standard output. Simply use the

 form `|&' rather than just `|'.

 The shell cannot presently redirect diagnostic output without also redirecting standard Page 30/95

 output, but `(command > output-file) >& error-file' is often an acceptable workaround.

 Either output-file or error-file may be `/dev/tty' to send output to the terminal.

 Features

 Having described how the shell accepts, parses and executes command lines, we now turn to

 a variety of its useful features.

 Control flow

 The shell contains a number of commands which can be used to regulate the flow of control

 in command files (shell scripts) and (in limited but useful ways) from terminal input.

 These commands all operate by forcing the shell to reread or skip in its input and, due to

 the implementation, restrict the placement of some of the commands.

 The foreach, switch, and while statements, as well as the if-then-else form of the if

 statement, require that the major keywords appear in a single simple command on an input

 line as shown below.

 If the shell's input is not seekable, the shell buffers up input whenever a loop is being

 read and performs seeks in this internal buffer to accomplish the rereading implied by the

 loop. (To the extent that this allows, backward gotos will succeed on non-seekable in?

 puts.)

 Expressions

 The if, while and exit builtin commands use expressions with a common syntax. The expres?

 sions can include any of the operators described in the next three sections. Note that

 the @ builtin command (q.v.) has its own separate syntax.

 Logical, arithmetical and comparison operators

 These operators are similar to those of C and have the same precedence. They include

 || && | ^ & == != =~ !~ <= >=

 < > << >> + - * / % ! ~ ()

 Here the precedence increases to the right, `==' `!=' `=~' and `!~', `<=' `>=' `<' and

 `>', `<<' and `>>', `+' and `-', `*' `/' and `%' being, in groups, at the same level. The

 `==' `!=' `=~' and `!~' operators compare their arguments as strings; all others operate

 on numbers. The operators `=~' and `!~' are like `!=' and `==' except that the right hand

 side is a glob-pattern (see Filename substitution) against which the left hand operand is

 matched. This reduces the need for use of the switch builtin command in shell scripts

 when all that is really needed is pattern matching.

 Null or missing arguments are considered `0'. The results of all expressions are strings, Page 31/95

 which represent decimal numbers. It is important to note that no two components of an ex?

 pression can appear in the same word; except when adjacent to components of expressions

 which are syntactically significant to the parser (`&' `|' `<' `>' `(' `)') they should be

 surrounded by spaces.

 Command exit status

 Commands can be executed in expressions and their exit status returned by enclosing them

 in braces (`{}'). Remember that the braces should be separated from the words of the com?

 mand by spaces. Command executions succeed, returning true, i.e., `1', if the command ex?

 its with status 0, otherwise they fail, returning false, i.e., `0'. If more detailed sta?

 tus information is required then the command should be executed outside of an expression

 and the status shell variable examined.

 File inquiry operators

 Some of these operators perform true/false tests on files and related objects. They are

 of the form -op file, where op is one of

 r Read access

 w Write access

 x Execute access

 X Executable in the path or shell builtin, e.g., `-X ls' and `-X ls-F' are generally

 true, but `-X /bin/ls' is not (+)

 e Existence

 o Ownership

 z Zero size

 s Non-zero size (+)

 f Plain file

 d Directory

 l Symbolic link (+) *

 b Block special file (+)

 c Character special file (+)

 p Named pipe (fifo) (+) *

 S Socket special file (+) *

 u Set-user-ID bit is set (+)

 g Set-group-ID bit is set (+)

 k Sticky bit is set (+) Page 32/95

 t file (which must be a digit) is an open file descriptor for a terminal device (+)

 R Has been migrated (Convex only) (+)

 L Applies subsequent operators in a multiple-operator test to a symbolic link rather

 than to the file to which the link points (+) *

 file is command and filename expanded and then tested to see if it has the specified rela?

 tionship to the real user. If file does not exist or is inaccessible or, for the opera?

 tors indicated by `*', if the specified file type does not exist on the current system,

 then all inquiries return false, i.e., `0'.

 These operators may be combined for conciseness: `-xy file' is equivalent to `-x file &&

 -y file'. (+) For example, `-fx' is true (returns `1') for plain executable files, but

 not for directories.

 L may be used in a multiple-operator test to apply subsequent operators to a symbolic link

 rather than to the file to which the link points. For example, `-lLo' is true for links

 owned by the invoking user. Lr, Lw and Lx are always true for links and false for non-

 links. L has a different meaning when it is the last operator in a multiple-operator

 test; see below.

 It is possible but not useful, and sometimes misleading, to combine operators which expect

 file to be a file with operators which do not (e.g., X and t). Following L with a non-

 file operator can lead to particularly strange results.

 Other operators return other information, i.e., not just `0' or `1'. (+) They have the

 same format as before; op may be one of

 A Last file access time, as the number of seconds since the epoch

 A: Like A, but in timestamp format, e.g., `Fri May 14 16:36:10 1993'

 M Last file modification time

 M: Like M, but in timestamp format

 C Last inode modification time

 C: Like C, but in timestamp format

 D Device number

 I Inode number

 F Composite file identifier, in the form device:inode

 L The name of the file pointed to by a symbolic link

 N Number of (hard) links

 P Permissions, in octal, without leading zero Page 33/95

 P: Like P, with leading zero

 Pmode Equivalent to `-P file & mode', e.g., `-P22 file' returns `22' if file is

 writable by group and other, `20' if by group only, and `0' if by neither

 Pmode: Like Pmode, with leading zero

 U Numeric userid

 U: Username, or the numeric userid if the username is unknown

 G Numeric groupid

 G: Groupname, or the numeric groupid if the groupname is unknown

 Z Size, in bytes

 Only one of these operators may appear in a multiple-operator test, and it must be the

 last. Note that L has a different meaning at the end of and elsewhere in a multiple-oper?

 ator test. Because `0' is a valid return value for many of these operators, they do not

 return `0' when they fail: most return `-1', and F returns `:'.

 If the shell is compiled with POSIX defined (see the version shell variable), the result

 of a file inquiry is based on the permission bits of the file and not on the result of the

 access(2) system call. For example, if one tests a file with -w whose permissions would

 ordinarily allow writing but which is on a file system mounted read-only, the test will

 succeed in a POSIX shell but fail in a non-POSIX shell.

 File inquiry operators can also be evaluated with the filetest builtin command (q.v.) (+).

 Jobs

 The shell associates a job with each pipeline. It keeps a table of current jobs, printed

 by the jobs command, and assigns them small integer numbers. When a job is started asyn?

 chronously with `&', the shell prints a line which looks like

 [1] 1234

 indicating that the job which was started asynchronously was job number 1 and had one

 (top-level) process, whose process id was 1234.

 If you are running a job and wish to do something else you may hit the suspend key (usu?

 ally `^Z'), which sends a STOP signal to the current job. The shell will then normally

 indicate that the job has been `Suspended' and print another prompt. If the listjobs

 shell variable is set, all jobs will be listed like the jobs builtin command; if it is set

 to `long' the listing will be in long format, like `jobs -l'. You can then manipulate the

 state of the suspended job. You can put it in the ``background'' with the bg command or

 run some other commands and eventually bring the job back into the ``foreground'' with fg. Page 34/95

 (See also the run-fg-editor editor command.) A `^Z' takes effect immediately and is like

 an interrupt in that pending output and unread input are discarded when it is typed. The

 wait builtin command causes the shell to wait for all background jobs to complete.

 The `^]' key sends a delayed suspend signal, which does not generate a STOP signal until a

 program attempts to read(2) it, to the current job. This can usefully be typed ahead when

 you have prepared some commands for a job which you wish to stop after it has read them.

 The `^Y' key performs this function in csh(1); in tcsh, `^Y' is an editing command. (+)

 A job being run in the background stops if it tries to read from the terminal. Background

 jobs are normally allowed to produce output, but this can be disabled by giving the com?

 mand `stty tostop'. If you set this tty option, then background jobs will stop when they

 try to produce output like they do when they try to read input.

 There are several ways to refer to jobs in the shell. The character `%' introduces a job

 name. If you wish to refer to job number 1, you can name it as `%1'. Just naming a job

 brings it to the foreground; thus `%1' is a synonym for `fg %1', bringing job 1 back into

 the foreground. Similarly, saying `%1 &' resumes job 1 in the background, just like `bg

 %1'. A job can also be named by an unambiguous prefix of the string typed in to start it:

 `%ex' would normally restart a suspended ex(1) job, if there were only one suspended job

 whose name began with the string `ex'. It is also possible to say `%?string' to specify a

 job whose text contains string, if there is only one such job.

 The shell maintains a notion of the current and previous jobs. In output pertaining to

 jobs, the current job is marked with a `+' and the previous job with a `-'. The abbrevia?

 tions `%+', `%', and (by analogy with the syntax of the history mechanism) `%%' all refer

 to the current job, and `%-' refers to the previous job.

 The job control mechanism requires that the stty(1) option `new' be set on some systems.

 It is an artifact from a `new' implementation of the tty driver which allows generation of

 interrupt characters from the keyboard to tell jobs to stop. See stty(1) and the setty

 builtin command for details on setting options in the new tty driver.

 Status reporting

 The shell learns immediately whenever a process changes state. It normally informs you

 whenever a job becomes blocked so that no further progress is possible, but only right be?

 fore it prints a prompt. This is done so that it does not otherwise disturb your work.

 If, however, you set the shell variable notify, the shell will notify you immediately of

 changes of status in background jobs. There is also a shell command notify which marks a Page 35/95

 single process so that its status changes will be immediately reported. By default notify

 marks the current process; simply say `notify' after starting a background job to mark it.

 When you try to leave the shell while jobs are stopped, you will be warned that `There are

 suspended jobs.' You may use the jobs command to see what they are. If you do this or im?

 mediately try to exit again, the shell will not warn you a second time, and the suspended

 jobs will be terminated.

 Automatic, periodic and timed events (+)

 There are various ways to run commands and take other actions automatically at various

 times in the ``life cycle'' of the shell. They are summarized here, and described in de?

 tail under the appropriate Builtin commands, Special shell variables and Special aliases.

 The sched builtin command puts commands in a scheduled-event list, to be executed by the

 shell at a given time.

 The beepcmd, cwdcmd, periodic, precmd, postcmd, and jobcmd Special aliases can be set, re?

 spectively, to execute commands when the shell wants to ring the bell, when the working

 directory changes, every tperiod minutes, before each prompt, before each command gets ex?

 ecuted, after each command gets executed, and when a job is started or is brought into the

 foreground.

 The autologout shell variable can be set to log out or lock the shell after a given number

 of minutes of inactivity.

 The mail shell variable can be set to check for new mail periodically.

 The printexitvalue shell variable can be set to print the exit status of commands which

 exit with a status other than zero.

 The rmstar shell variable can be set to ask the user, when `rm *' is typed, if that is re?

 ally what was meant.

 The time shell variable can be set to execute the time builtin command after the comple?

 tion of any process that takes more than a given number of CPU seconds.

 The watch and who shell variables can be set to report when selected users log in or out,

 and the log builtin command reports on those users at any time.

 Native Language System support (+)

 The shell is eight bit clean (if so compiled; see the version shell variable) and thus

 supports character sets needing this capability. NLS support differs depending on whether

 or not the shell was compiled to use the system's NLS (again, see version). In either

 case, 7-bit ASCII is the default character code (e.g., the classification of which charac? Page 36/95

 ters are printable) and sorting, and changing the LANG or LC_CTYPE environment variables

 causes a check for possible changes in these respects.

 When using the system's NLS, the setlocale(3) function is called to determine appropriate

 character code/classification and sorting (e.g., a 'en_CA.UTF-8' would yield "UTF-8" as a

 character code). This function typically examines the LANG and LC_CTYPE environment vari?

 ables; refer to the system documentation for further details. When not using the system's

 NLS, the shell simulates it by assuming that the ISO 8859-1 character set is used whenever

 either of the LANG and LC_CTYPE variables are set, regardless of their values. Sorting is

 not affected for the simulated NLS.

 In addition, with both real and simulated NLS, all printable characters in the range

 \200-\377, i.e., those that have M-char bindings, are automatically rebound to self-in?

 sert-command. The corresponding binding for the escape-char sequence, if any, is left

 alone. These characters are not rebound if the NOREBIND environment variable is set.

 This may be useful for the simulated NLS or a primitive real NLS which assumes full ISO

 8859-1. Otherwise, all M-char bindings in the range \240-\377 are effectively undone.

 Explicitly rebinding the relevant keys with bindkey is of course still possible.

 Unknown characters (i.e., those that are neither printable nor control characters) are

 printed in the format \nnn. If the tty is not in 8 bit mode, other 8 bit characters are

 printed by converting them to ASCII and using standout mode. The shell never changes the

 7/8 bit mode of the tty and tracks user-initiated changes of 7/8 bit mode. NLS users (or,

 for that matter, those who want to use a meta key) may need to explicitly set the tty in 8

 bit mode through the appropriate stty(1) command in, e.g., the ~/.login file.

 OS variant support (+)

 A number of new builtin commands are provided to support features in particular operating

 systems. All are described in detail in the Builtin commands section.

 On systems that support TCF (aix-ibm370, aix-ps2), getspath and setspath get and set the

 system execution path, getxvers and setxvers get and set the experimental version prefix

 and migrate migrates processes between sites. The jobs builtin prints the site on which

 each job is executing.

 Under BS2000, bs2cmd executes commands of the underlying BS2000/OSD operating system.

 Under Domain/OS, inlib adds shared libraries to the current environment, rootnode changes

 the rootnode and ver changes the systype.

 Under Mach, setpath is equivalent to Mach's setpath(1). Page 37/95

 Under Masscomp/RTU and Harris CX/UX, universe sets the universe.

 Under Harris CX/UX, ucb or att runs a command under the specified universe.

 Under Convex/OS, warp prints or sets the universe.

 The VENDOR, OSTYPE and MACHTYPE environment variables indicate respectively the vendor,

 operating system and machine type (microprocessor class or machine model) of the system on

 which the shell thinks it is running. These are particularly useful when sharing one's

 home directory between several types of machines; one can, for example,

 set path = (~/bin.$MACHTYPE /usr/ucb /bin /usr/bin .)

 in one's ~/.login and put executables compiled for each machine in the appropriate direc?

 tory.

 The version shell variable indicates what options were chosen when the shell was compiled.

 Note also the newgrp builtin, the afsuser and echo_style shell variables and the system-

 dependent locations of the shell's input files (see FILES).

 Signal handling

 Login shells ignore interrupts when reading the file ~/.logout. The shell ignores quit

 signals unless started with -q. Login shells catch the terminate signal, but non-login

 shells inherit the terminate behavior from their parents. Other signals have the values

 which the shell inherited from its parent.

 In shell scripts, the shell's handling of interrupt and terminate signals can be con?

 trolled with onintr, and its handling of hangups can be controlled with hup and nohup.

 The shell exits on a hangup (see also the logout shell variable). By default, the shell's

 children do too, but the shell does not send them a hangup when it exits. hup arranges

 for the shell to send a hangup to a child when it exits, and nohup sets a child to ignore

 hangups.

 Terminal management (+)

 The shell uses three different sets of terminal (``tty'') modes: `edit', used when edit?

 ing, `quote', used when quoting literal characters, and `execute', used when executing

 commands. The shell holds some settings in each mode constant, so commands which leave

 the tty in a confused state do not interfere with the shell. The shell also matches

 changes in the speed and padding of the tty. The list of tty modes that are kept constant

 can be examined and modified with the setty builtin. Note that although the editor uses

 CBREAK mode (or its equivalent), it takes typed-ahead characters anyway.

 The echotc, settc and telltc commands can be used to manipulate and debug terminal capa? Page 38/95

 bilities from the command line.

 On systems that support SIGWINCH or SIGWINDOW, the shell adapts to window resizing auto?

 matically and adjusts the environment variables LINES and COLUMNS if set. If the environ?

 ment variable TERMCAP contains li# and co# fields, the shell adjusts them to reflect the

 new window size.

REFERENCE

 The next sections of this manual describe all of the available Builtin commands, Special

 aliases and Special shell variables.

 Builtin commands

 %job A synonym for the fg builtin command.

 %job & A synonym for the bg builtin command.

 : Does nothing, successfully.

 @

 @ name = expr

 @ name[index] = expr

 @ name++|--

 @ name[index]++|--

 The first form prints the values of all shell variables.

 The second form assigns the value of expr to name. The third form assigns the

 value of expr to the index'th component of name; both name and its index'th compo?

 nent must already exist.

 expr may contain the operators `*', `+', etc., as in C. If expr contains `<',

 `>', `&' or `' then at least that part of expr must be placed within `()'. Note

 that the syntax of expr has nothing to do with that described under Expressions.

 The fourth and fifth forms increment (`++') or decrement (`--') name or its in?

 dex'th component.

 The space between `@' and name is required. The spaces between name and `=' and

 between `=' and expr are optional. Components of expr must be separated by spa?

 ces.

 alias [name [wordlist]]

 Without arguments, prints all aliases. With name, prints the alias for name.

 With name and wordlist, assigns wordlist as the alias of name. wordlist is com?

 mand and filename substituted. name may not be `alias' or `unalias'. See also Page 39/95

 the unalias builtin command.

 alloc Shows the amount of dynamic memory acquired, broken down into used and free mem?

 ory. With an argument shows the number of free and used blocks in each size cate?

 gory. The categories start at size 8 and double at each step. This command's

 output may vary across system types, because systems other than the VAX may use a

 different memory allocator.

 bg [%job ...]

 Puts the specified jobs (or, without arguments, the current job) into the back?

 ground, continuing each if it is stopped. job may be a number, a string, `', `%',

 `+' or `-' as described under Jobs.

 bindkey [-l|-d|-e|-v|-u] (+)

 bindkey [-a] [-b] [-k] [-r] [--] key (+)

 bindkey [-a] [-b] [-k] [-c|-s] [--] key command (+)

 Without options, the first form lists all bound keys and the editor command to

 which each is bound, the second form lists the editor command to which key is

 bound and the third form binds the editor command command to key. Options in?

 clude:

 -l Lists all editor commands and a short description of each.

 -d Binds all keys to the standard bindings for the default editor, as per -e and

 -v below.

 -e Binds all keys to emacs(1)-style bindings. Unsets vimode.

 -v Binds all keys to vi(1)-style bindings. Sets vimode.

 -a Lists or changes key-bindings in the alternative key map. This is the key map

 used in vimode command mode.

 -b key is interpreted as a control character written ^character (e.g., `^A') or

 C-character (e.g., `C-A'), a meta character written M-character (e.g., `M-A'),

 a function key written F-string (e.g., `F-string'), or an extended prefix key

 written X-character (e.g., `X-A').

 -k key is interpreted as a symbolic arrow key name, which may be one of `down',

 `up', `left' or `right'.

 -r Removes key's binding. Be careful: `bindkey -r' does not bind key to self-in?

 sert-command (q.v.), it unbinds key completely.

 -c command is interpreted as a builtin or external command instead of an editor Page 40/95

 command.

 -s command is taken as a literal string and treated as terminal input when key is

 typed. Bound keys in command are themselves reinterpreted, and this continues

 for ten levels of interpretation.

 -- Forces a break from option processing, so the next word is taken as key even

 if it begins with '-'.

 -u (or any invalid option)

 Prints a usage message.

 key may be a single character or a string. If a command is bound to a string, the

 first character of the string is bound to sequence-lead-in and the entire string

 is bound to the command.

 Control characters in key can be literal (they can be typed by preceding them with

 the editor command quoted-insert, normally bound to `^V') or written caret-charac?

 ter style, e.g., `^A'. Delete is written `^?' (caret-question mark). key and

 command can contain backslashed escape sequences (in the style of System V

 echo(1)) as follows:

 \a Bell

 \b Backspace

 \e Escape

 \f Form feed

 \n Newline

 \r Carriage return

 \t Horizontal tab

 \v Vertical tab

 \nnn The ASCII character corresponding to the octal number nnn

 `\' nullifies the special meaning of the following character, if it has any, no?

 tably `\' and `^'.

 bs2cmd bs2000-command (+)

 Passes bs2000-command to the BS2000 command interpreter for execution. Only non-

 interactive commands can be executed, and it is not possible to execute any com?

 mand that would overlay the image of the current process, like /EXECUTE or /CALL-

 PROCEDURE. (BS2000 only)

 break Causes execution to resume after the end of the nearest enclosing foreach or Page 41/95

 while. The remaining commands on the current line are executed. Multi-level

 breaks are thus possible by writing them all on one line.

 breaksw Causes a break from a switch, resuming after the endsw.

 builtins (+)

 Prints the names of all builtin commands.

 bye (+) A synonym for the logout builtin command. Available only if the shell was so com?

 piled; see the version shell variable.

 case label:

 A label in a switch statement as discussed below.

 cd [-p] [-l] [-n|-v] [I--] [name]

 If a directory name is given, changes the shell's working directory to name. If

 not, changes to home, unless the cdtohome variable is not set, in which case a

 name is required. If name is `-' it is interpreted as the previous working direc?

 tory (see Other substitutions). (+) If name is not a subdirectory of the current

 directory (and does not begin with `/', `./' or `../'), each component of the

 variable cdpath is checked to see if it has a subdirectory name. Finally, if all

 else fails but name is a shell variable whose value begins with `/' or '.', then

 this is tried to see if it is a directory, and the -p option is implied.

 With -p, prints the final directory stack, just like dirs. The -l, -n and -v

 flags have the same effect on cd as on dirs, and they imply -p. (+) Using --

 forces a break from option processing so the next word is taken as the directory

 name even if it begins with '-'. (+)

 See also the implicitcd and cdtohome shell variables.

 chdir A synonym for the cd builtin command.

 complete [command [word/pattern/list[:select]/[[suffix]/] ...]] (+)

 Without arguments, lists all completions. With command, lists completions for

 command. With command and word etc., defines completions.

 command may be a full command name or a glob-pattern (see Filename substitution).

 It can begin with `-' to indicate that completion should be used only when command

 is ambiguous.

 word specifies which word relative to the current word is to be completed, and may

 be one of the following:

 c Current-word completion. pattern is a glob-pattern which must match the Page 42/95

 beginning of the current word on the command line. pattern is ignored

 when completing the current word.

 C Like c, but includes pattern when completing the current word.

 n Next-word completion. pattern is a glob-pattern which must match the be?

 ginning of the previous word on the command line.

 N Like n, but must match the beginning of the word two before the current

 word.

 p Position-dependent completion. pattern is a numeric range, with the same

 syntax used to index shell variables, which must include the current word.

 list, the list of possible completions, may be one of the following:

 a Aliases

 b Bindings (editor commands)

 c Commands (builtin or external commands)

 C External commands which begin with the supplied path prefix

 d Directories

 D Directories which begin with the supplied path prefix

 e Environment variables

 f Filenames

 F Filenames which begin with the supplied path prefix

 g Groupnames

 j Jobs

 l Limits

 n Nothing

 s Shell variables

 S Signals

 t Plain (``text'') files

 T Plain (``text'') files which begin with the supplied path prefix

 v Any variables

 u Usernames

 x Like n, but prints select when list-choices is used.

 X Completions

 $var Words from the variable var

 (...) Words from the given list Page 43/95

 `...` Words from the output of command

 select is an optional glob-pattern. If given, words from only list that match se?

 lect are considered and the fignore shell variable is ignored. The last three

 types of completion may not have a select pattern, and x uses select as an explan?

 atory message when the list-choices editor command is used.

 suffix is a single character to be appended to a successful completion. If null,

 no character is appended. If omitted (in which case the fourth delimiter can also

 be omitted), a slash is appended to directories and a space to other words.

 command invoked from `...` version has additional environment variable set, the

 variable name is COMMAND_LINE and contains (as its name indicates) contents of the

 current (already typed in) command line. One can examine and use contents of the

 COMMAND_LINE variable in her custom script to build more sophisticated completions

 (see completion for svn(1) included in this package).

 Now for some examples. Some commands take only directories as arguments, so

 there's no point completing plain files.

 > complete cd 'p/1/d/'

 completes only the first word following `cd' (`p/1') with a directory. p-type

 completion can also be used to narrow down command completion:

 > co[^D]

 complete compress

 > complete -co* 'p/0/(compress)/'

 > co[^D]

 > compress

 This completion completes commands (words in position 0, `p/0') which begin with

 `co' (thus matching `co*') to `compress' (the only word in the list). The leading

 `-' indicates that this completion is to be used with only ambiguous commands.

 > complete find 'n/-user/u/'

 is an example of n-type completion. Any word following `find' and immediately

 following `-user' is completed from the list of users.

 > complete cc 'c/-I/d/'

 demonstrates c-type completion. Any word following `cc' and beginning with `-I'

 is completed as a directory. `-I' is not taken as part of the directory because

 we used lowercase c. Page 44/95

 Different lists are useful with different commands.

 > complete alias 'p/1/a/'

 > complete man 'p/*/c/'

 > complete set 'p/1/s/'

 > complete true 'p/1/x:Truth has no options./'

 These complete words following `alias' with aliases, `man' with commands, and

 `set' with shell variables. `true' doesn't have any options, so x does nothing

 when completion is attempted and prints `Truth has no options.' when completion

 choices are listed.

 Note that the man example, and several other examples below, could just as well

 have used 'c/*' or 'n/*' as 'p/*'.

 Words can be completed from a variable evaluated at completion time,

 > complete ftp 'p/1/$hostnames/'

 > set hostnames = (rtfm.mit.edu tesla.ee.cornell.edu)

 > ftp [^D]

 rtfm.mit.edu tesla.ee.cornell.edu

 > ftp [^C]

 > set hostnames = (rtfm.mit.edu tesla.ee.cornell.edu uunet.uu.net)

 > ftp [^D]

 rtfm.mit.edu tesla.ee.cornell.edu uunet.uu.net

 or from a command run at completion time:

 > complete kill 'p/*/`ps | awk \{print\ \$1\}`/'

 > kill -9 [^D]

 23113 23377 23380 23406 23429 23529 23530 PID

 Note that the complete command does not itself quote its arguments, so the braces,

 space and `$' in `{print $1}' must be quoted explicitly.

 One command can have multiple completions:

 > complete dbx 'p/2/(core)/' 'p/*/c/'

 completes the second argument to `dbx' with the word `core' and all other argu?

 ments with commands. Note that the positional completion is specified before the

 next-word completion. Because completions are evaluated from left to right, if

 the next-word completion were specified first it would always match and the posi?

 tional completion would never be executed. This is a common mistake when defining Page 45/95

 a completion.

 The select pattern is useful when a command takes files with only particular forms

 as arguments. For example,

 > complete cc 'p/*/f:*.[cao]/'

 completes `cc' arguments to files ending in only `.c', `.a', or `.o'. select can

 also exclude files, using negation of a glob-pattern as described under Filename

 substitution. One might use

 > complete rm 'p/*/f:^*.{c,h,cc,C,tex,1,man,l,y}/'

 to exclude precious source code from `rm' completion. Of course, one could still

 type excluded names manually or override the completion mechanism using the com?

 plete-word-raw or list-choices-raw editor commands (q.v.).

 The `C', `D', `F' and `T' lists are like `c', `d', `f' and `t' respectively, but

 they use the select argument in a different way: to restrict completion to files

 beginning with a particular path prefix. For example, the Elm mail program uses

 `=' as an abbreviation for one's mail directory. One might use

 > complete elm c@=@F:$HOME/Mail/@

 to complete `elm -f =' as if it were `elm -f ~/Mail/'. Note that we used `@' in?

 stead of `/' to avoid confusion with the select argument, and we used `$HOME' in?

 stead of `~' because home directory substitution works at only the beginning of a

 word.

 suffix is used to add a nonstandard suffix (not space or `/' for directories) to

 completed words.

 > complete finger 'c/*@/$hostnames/' 'p/1/u/@'

 completes arguments to `finger' from the list of users, appends an `@', and then

 completes after the `@' from the `hostnames' variable. Note again the order in

 which the completions are specified.

 Finally, here's a complex example for inspiration:

 > complete find \

 'n/-name/f/' 'n/-newer/f/' 'n/-{,n}cpio/f/' \

 ?n/-exec/c/' 'n/-ok/c/' 'n/-user/u/' \

 'n/-group/g/' 'n/-fstype/(nfs 4.2)/' \

 'n/-type/(b c d f l p s)/' \

 ?c/-/(name newer cpio ncpio exec ok user \ Page 46/95

 group fstype type atime ctime depth inum \

 ls mtime nogroup nouser perm print prune \

 size xdev)/' \

 'p/*/d/'

 This completes words following `-name', `-newer', `-cpio' or `ncpio' (note the

 pattern which matches both) to files, words following `-exec' or `-ok' to com?

 mands, words following `user' and `group' to users and groups respectively and

 words following `-fstype' or `-type' to members of the given lists. It also com?

 pletes the switches themselves from the given list (note the use of c-type comple?

 tion) and completes anything not otherwise completed to a directory. Whew.

 Remember that programmed completions are ignored if the word being completed is a

 tilde substitution (beginning with `~') or a variable (beginning with `$'). See

 also the uncomplete builtin command.

 continue

 Continues execution of the nearest enclosing while or foreach. The rest of the

 commands on the current line are executed.

 default:

 Labels the default case in a switch statement. It should come after all case la?

 bels.

 dirs [-l] [-n|-v]

 dirs -S|-L [filename] (+)

 dirs -c (+)

 The first form prints the directory stack. The top of the stack is at the left

 and the first directory in the stack is the current directory. With -l, `~' or

 `~name' in the output is expanded explicitly to home or the pathname of the home

 directory for user name. (+) With -n, entries are wrapped before they reach the

 edge of the screen. (+) With -v, entries are printed one per line, preceded by

 their stack positions. (+) If more than one of -n or -v is given, -v takes prece?

 dence. -p is accepted but does nothing.

 With -S, the second form saves the directory stack to filename as a series of cd

 and pushd commands. With -L, the shell sources filename, which is presumably a

 directory stack file saved by the -S option or the savedirs mechanism. In either

 case, dirsfile is used if filename is not given and ~/.cshdirs is used if dirsfile Page 47/95

 is unset.

 Note that login shells do the equivalent of `dirs -L' on startup and, if savedirs

 is set, `dirs -S' before exiting. Because only ~/.tcshrc is normally sourced be?

 fore ~/.cshdirs, dirsfile should be set in ~/.tcshrc rather than ~/.login.

 The last form clears the directory stack.

 echo [-n] word ...

 Writes each word to the shell's standard output, separated by spaces and termi?

 nated with a newline. The echo_style shell variable may be set to emulate (or

 not) the flags and escape sequences of the BSD and/or System V versions of echo;

 see echo(1).

 echotc [-sv] arg ... (+)

 Exercises the terminal capabilities (see termcap(5)) in args. For example,

 'echotc home' sends the cursor to the home position, 'echotc cm 3 10' sends it to

 column 3 and row 10, and 'echotc ts 0; echo "This is a test."; echotc fs' prints

 "This is a test." in the status line.

 If arg is 'baud', 'cols', 'lines', 'meta' or 'tabs', prints the value of that ca?

 pability ("yes" or "no" indicating that the terminal does or does not have that

 capability). One might use this to make the output from a shell script less ver?

 bose on slow terminals, or limit command output to the number of lines on the

 screen:

 > set history=`echotc lines`

 > @ history--

 Termcap strings may contain wildcards which will not echo correctly. One should

 use double quotes when setting a shell variable to a terminal capability string,

 as in the following example that places the date in the status line:

 > set tosl="`echotc ts 0`"

 > set frsl="`echotc fs`"

 > echo -n "$tosl";date; echo -n "$frsl"

 With -s, nonexistent capabilities return the empty string rather than causing an

 error. With -v, messages are verbose.

 else

 end

 endif Page 48/95

 endsw See the description of the foreach, if, switch, and while statements below.

 eval arg ...

 Treats the arguments as input to the shell and executes the resulting command(s)

 in the context of the current shell. This is usually used to execute commands

 generated as the result of command or variable substitution, because parsing oc?

 curs before these substitutions. See tset(1) for a sample use of eval.

 exec command

 Executes the specified command in place of the current shell.

 exit [expr]

 The shell exits either with the value of the specified expr (an expression, as de?

 scribed under Expressions) or, without expr, with the value 0.

 fg [%job ...]

 Brings the specified jobs (or, without arguments, the current job) into the fore?

 ground, continuing each if it is stopped. job may be a number, a string, `', `%',

 `+' or `-' as described under Jobs. See also the run-fg-editor editor command.

 filetest -op file ... (+)

 Applies op (which is a file inquiry operator as described under File inquiry oper?

 ators) to each file and returns the results as a space-separated list.

 foreach name (wordlist)

 ...

 end Successively sets the variable name to each member of wordlist and executes the

 sequence of commands between this command and the matching end. (Both foreach and

 end must appear alone on separate lines.) The builtin command continue may be

 used to continue the loop prematurely and the builtin command break to terminate

 it prematurely. When this command is read from the terminal, the loop is read

 once prompting with `foreach? ' (or prompt2) before any statements in the loop are

 executed. If you make a mistake typing in a loop at the terminal you can rub it

 out.

 getspath (+)

 Prints the system execution path. (TCF only)

 getxvers (+)

 Prints the experimental version prefix. (TCF only)

 glob wordlist Page 49/95

 Like echo, but the `-n' parameter is not recognized and words are delimited by

 null characters in the output. Useful for programs which wish to use the shell to

 filename expand a list of words.

 goto word

 word is filename and command-substituted to yield a string of the form `label'.

 The shell rewinds its input as much as possible, searches for a line of the form

 `label:', possibly preceded by blanks or tabs, and continues execution after that

 line.

 hashstat

 Prints a statistics line indicating how effective the internal hash table has been

 at locating commands (and avoiding exec's). An exec is attempted for each compo?

 nent of the path where the hash function indicates a possible hit, and in each

 component which does not begin with a `/'.

 On machines without vfork(2), prints only the number and size of hash buckets.

 history [-hTr] [n]

 history -S|-L|-M [filename] (+)

 history -c (+)

 The first form prints the history event list. If n is given only the n most re?

 cent events are printed or saved. With -h, the history list is printed without

 leading numbers. If -T is specified, timestamps are printed also in comment form.

 (This can be used to produce files suitable for loading with 'history -L' or

 'source -h'.) With -r, the order of printing is most recent first rather than

 oldest first.

 With -S, the second form saves the history list to filename. If the first word of

 the savehist shell variable is set to a number, at most that many lines are saved.

 If the second word of savehist is set to `merge', the history list is merged with

 the existing history file instead of replacing it (if there is one) and sorted by

 time stamp. (+) Merging is intended for an environment like the X Window System

 with several shells in simultaneous use. If the second word of savehist is

 `merge' and the third word is set to `lock', the history file update will be seri?

 alized with other shell sessions that would possibly like to merge history at ex?

 actly the same time.

 With -L, the shell appends filename, which is presumably a history list saved by Page 50/95

 the -S option or the savehist mechanism, to the history list. -M is like -L, but

 the contents of filename are merged into the history list and sorted by timestamp.

 In either case, histfile is used if filename is not given and ~/.history is used

 if histfile is unset. `history -L' is exactly like 'source -h' except that it

 does not require a filename.

 Note that login shells do the equivalent of `history -L' on startup and, if save?

 hist is set, `history -S' before exiting. Because only ~/.tcshrc is normally

 sourced before ~/.history, histfile should be set in ~/.tcshrc rather than ~/.lo?

 gin.

 If histlit is set, the first and second forms print and save the literal (unex?

 panded) form of the history list.

 The last form clears the history list.

 hup [command] (+)

 With command, runs command such that it will exit on a hangup signal and arranges

 for the shell to send it a hangup signal when the shell exits. Note that commands

 may set their own response to hangups, overriding hup. Without an argument,

 causes the non-interactive shell only to exit on a hangup for the remainder of the

 script. See also Signal handling and the nohup builtin command.

 if (expr) command

 If expr (an expression, as described under Expressions) evaluates true, then com?

 mand is executed. Variable substitution on command happens early, at the same

 time it does for the rest of the if command. command must be a simple command,

 not an alias, a pipeline, a command list or a parenthesized command list, but it

 may have arguments. Input/output redirection occurs even if expr is false and

 command is thus not executed; this is a bug.

 if (expr) then

 ...

 else if (expr2) then

 ...

 else

 ...

 endif If the specified expr is true then the commands to the first else are executed;

 otherwise if expr2 is true then the commands to the second else are executed, etc. Page 51/95

 Any number of else-if pairs are possible; only one endif is needed. The else part

 is likewise optional. (The words else and endif must appear at the beginning of

 input lines; the if must appear alone on its input line or after an else.)

 inlib shared-library ... (+)

 Adds each shared-library to the current environment. There is no way to remove a

 shared library. (Domain/OS only)

 jobs [-l]

 Lists the active jobs. With -l, lists process IDs in addition to the normal in?

 formation. On TCF systems, prints the site on which each job is executing.

 kill [-s signal] %job|pid ...

 kill -l The first and second forms sends the specified signal (or, if none is given, the

 TERM (terminate) signal) to the specified jobs or processes. job may be a number,

 a string, `', `%', `+' or `-' as described under Jobs. Signals are either given

 by number or by name (as given in /usr/include/signal.h, stripped of the prefix

 `SIG'). There is no default job; saying just `kill' does not send a signal to the

 current job. If the signal being sent is TERM (terminate) or HUP (hangup), then

 the job or process is sent a CONT (continue) signal as well. The third form lists

 the signal names.

 limit [-h] [resource [maximum-use]]

 Limits the consumption by the current process and each process it creates to not

 individually exceed maximum-use on the specified resource. If no maximum-use is

 given, then the current limit is printed; if no resource is given, then all limi?

 tations are given. If the -h flag is given, the hard limits are used instead of

 the current limits. The hard limits impose a ceiling on the values of the current

 limits. Only the super-user may raise the hard limits, but a user may lower or

 raise the current limits within the legal range.

 Controllable resources currently include (if supported by the OS):

 cputime

 the maximum number of cpu-seconds to be used by each process

 filesize

 the largest single file which can be created

 datasize

 the maximum growth of the data+stack region via sbrk(2) beyond the end of Page 52/95

 the program text

 stacksize

 the maximum size of the automatically-extended stack region

 coredumpsize

 the size of the largest core dump that will be created

 memoryuse

 the maximum amount of physical memory a process may have allocated to it at

 a given time

 vmemoryuse

 the maximum amount of virtual memory a process may have allocated to it at

 a given time (address space)

 vmemoryuse

 the maximum amount of virtual memory a process may have allocated to it at

 a given time

 heapsize

 the maximum amount of memory a process may allocate per brk() system call

 descriptors or openfiles

 the maximum number of open files for this process

 pseudoterminals

 the maximum number of pseudo-terminals for this user

 kqueues

 the maximum number of kqueues allocated for this process

 concurrency

 the maximum number of threads for this process

 memorylocked

 the maximum size which a process may lock into memory using mlock(2)

 maxproc

 the maximum number of simultaneous processes for this user id

 maxthread

 the maximum number of simultaneous threads (lightweight processes) for this

 user id

 threads

 the maximum number of threads for this process Page 53/95

 sbsize the maximum size of socket buffer usage for this user

 swapsize

 the maximum amount of swap space reserved or used for this user

 maxlocks

 the maximum number of locks for this user

 posixlocks

 the maximum number of POSIX advisory locks for this user

 maxsignal

 the maximum number of pending signals for this user

 maxmessage

 the maximum number of bytes in POSIX mqueues for this user

 maxnice

 the maximum nice priority the user is allowed to raise mapped from

 [19...-20] to [0...39] for this user

 maxrtprio

 the maximum realtime priority for this user maxrttime the timeout for RT

 tasks in microseconds for this user.

 maximum-use may be given as a (floating point or integer) number followed by a

 scale factor. For all limits other than cputime the default scale is `k' or

 `kilobytes' (1024 bytes); a scale factor of `m' or `megabytes' or `g' or `giga?

 bytes' may also be used. For cputime the default scaling is `seconds', while `m'

 for minutes or `h' for hours, or a time of the form `mm:ss' giving minutes and

 seconds may be used.

 If maximum-use is `unlimited', then the limitation on the specified resource is

 removed (this is equivalent to the unlimit builtin command).

 For both resource names and scale factors, unambiguous prefixes of the names suf?

 fice.

 log (+) Prints the watch shell variable and reports on each user indicated in watch who is

 logged in, regardless of when they last logged in. See also watchlog.

 login Terminates a login shell, replacing it with an instance of /bin/login. This is one

 way to log off, included for compatibility with sh(1).

 logout Terminates a login shell. Especially useful if ignoreeof is set.

 ls-F [-switch ...] [file ...] (+) Page 54/95

 Lists files like `ls -F', but much faster. It identifies each type of special

 file in the listing with a special character:

 / Directory

 * Executable

 # Block device

 % Character device

 | Named pipe (systems with named pipes only)

 = Socket (systems with sockets only)

 @ Symbolic link (systems with symbolic links only)

 + Hidden directory (AIX only) or context dependent (HP/UX only)

 : Network special (HP/UX only)

 If the listlinks shell variable is set, symbolic links are identified in more de?

 tail (on only systems that have them, of course):

 @ Symbolic link to a non-directory

 > Symbolic link to a directory

 & Symbolic link to nowhere

 listlinks also slows down ls-F and causes partitions holding files pointed to by

 symbolic links to be mounted.

 If the listflags shell variable is set to `x', `a' or `A', or any combination

 thereof (e.g., `xA'), they are used as flags to ls-F, making it act like `ls -xF',

 `ls -Fa', `ls -FA' or a combination (e.g., `ls -FxA'). On machines where `ls -C'

 is not the default, ls-F acts like `ls -CF', unless listflags contains an `x', in

 which case it acts like `ls -xF'. ls-F passes its arguments to ls(1) if it is

 given any switches, so `alias ls ls-F' generally does the right thing.

 The ls-F builtin can list files using different colors depending on the filetype

 or extension. See the color shell variable and the LS_COLORS environment vari?

 able.

 migrate [-site] pid|%jobid ... (+)

 migrate -site (+)

 The first form migrates the process or job to the site specified or the default

 site determined by the system path. The second form is equivalent to `migrate

 -site $$': it migrates the current process to the specified site. Migrating the

 shell itself can cause unexpected behavior, because the shell does not like to Page 55/95

 lose its tty. (TCF only)

 newgrp [-] [group] (+)

 Equivalent to `exec newgrp'; see newgrp(1). Available only if the shell was so

 compiled; see the version shell variable.

 nice [+number] [command]

 Sets the scheduling priority for the shell to number, or, without number, to 4.

 With command, runs command at the appropriate priority. The greater the number,

 the less cpu the process gets. The super-user may specify negative priority by

 using `nice -number ...'. Command is always executed in a sub-shell, and the re?

 strictions placed on commands in simple if statements apply.

 nohup [command]

 With command, runs command such that it will ignore hangup signals. Note that

 commands may set their own response to hangups, overriding nohup. Without an ar?

 gument, causes the non-interactive shell only to ignore hangups for the remainder

 of the script. See also Signal handling and the hup builtin command.

 notify [%job ...]

 Causes the shell to notify the user asynchronously when the status of any of the

 specified jobs (or, without %job, the current job) changes, instead of waiting un?

 til the next prompt as is usual. job may be a number, a string, `', `%', `+' or

 `-' as described under Jobs. See also the notify shell variable.

 onintr [-|label]

 Controls the action of the shell on interrupts. Without arguments, restores the

 default action of the shell on interrupts, which is to terminate shell scripts or

 to return to the terminal command input level. With `-', causes all interrupts to

 be ignored. With label, causes the shell to execute a `goto label' when an inter?

 rupt is received or a child process terminates because it was interrupted.

 onintr is ignored if the shell is running detached and in system startup files

 (see FILES), where interrupts are disabled anyway.

 popd [-p] [-l] [-n|-v] [+n]

 Without arguments, pops the directory stack and returns to the new top directory.

 With a number `+n', discards the n'th entry in the stack.

 Finally, all forms of popd print the final directory stack, just like dirs. The

 pushdsilent shell variable can be set to prevent this and the -p flag can be given Page 56/95

 to override pushdsilent. The -l, -n and -v flags have the same effect on popd as

 on dirs. (+)

 printenv [name] (+)

 Prints the names and values of all environment variables or, with name, the value

 of the environment variable name.

 pushd [-p] [-l] [-n|-v] [name|+n]

 Without arguments, exchanges the top two elements of the directory stack. If

 pushdtohome is set, pushd without arguments does `pushd ~', like cd. (+) With

 name, pushes the current working directory onto the directory stack and changes to

 name. If name is `-' it is interpreted as the previous working directory (see

 Filename substitution). (+) If dunique is set, pushd removes any instances of

 name from the stack before pushing it onto the stack. (+) With a number `+n', ro?

 tates the nth element of the directory stack around to be the top element and

 changes to it. If dextract is set, however, `pushd +n' extracts the nth direc?

 tory, pushes it onto the top of the stack and changes to it. (+)

 Finally, all forms of pushd print the final directory stack, just like dirs. The

 pushdsilent shell variable can be set to prevent this and the -p flag can be given

 to override pushdsilent. The -l, -n and -v flags have the same effect on pushd as

 on dirs. (+)

 rehash Causes the internal hash table of the contents of the directories in the path

 variable to be recomputed. This is needed if the autorehash shell variable is not

 set and new commands are added to directories in path while you are logged in.

 With autorehash, a new command will be found automatically, except in the special

 case where another command of the same name which is located in a different direc?

 tory already exists in the hash table. Also flushes the cache of home directories

 built by tilde expansion.

 repeat count command

 The specified command, which is subject to the same restrictions as the command in

 the one line if statement above, is executed count times. I/O redirections occur

 exactly once, even if count is 0.

 rootnode //nodename (+)

 Changes the rootnode to //nodename, so that `/' will be interpreted as `//node?

 name'. (Domain/OS only) Page 57/95

 sched (+)

 sched [+]hh:mm command (+)

 sched -n (+)

 The first form prints the scheduled-event list. The sched shell variable may be

 set to define the format in which the scheduled-event list is printed. The second

 form adds command to the scheduled-event list. For example,

 > sched 11:00 echo It\'s eleven o\'clock.

 causes the shell to echo `It's eleven o'clock.' at 11 AM. The time may be in

 12-hour AM/PM format

 > sched 5pm set prompt='[%h] It\'s after 5; go home: >'

 or may be relative to the current time:

 > sched +2:15 /usr/lib/uucp/uucico -r1 -sother

 A relative time specification may not use AM/PM format. The third form removes

 item n from the event list:

 > sched

 1 Wed Apr 4 15:42 /usr/lib/uucp/uucico -r1 -sother

 2 Wed Apr 4 17:00 set prompt=[%h] It's after 5; go home: >

 > sched -2

 > sched

 1 Wed Apr 4 15:42 /usr/lib/uucp/uucico -r1 -sother

 A command in the scheduled-event list is executed just before the first prompt is

 printed after the time when the command is scheduled. It is possible to miss the

 exact time when the command is to be run, but an overdue command will execute at

 the next prompt. A command which comes due while the shell is waiting for user

 input is executed immediately. However, normal operation of an already-running

 command will not be interrupted so that a scheduled-event list element may be run.

 This mechanism is similar to, but not the same as, the at(1) command on some Unix

 systems. Its major disadvantage is that it may not run a command at exactly the

 specified time. Its major advantage is that because sched runs directly from the

 shell, it has access to shell variables and other structures. This provides a

 mechanism for changing one's working environment based on the time of day.

 set

 set name ... Page 58/95

 set name=word ...

 set [-r] [-f|-l] name=(wordlist) ... (+)

 set name[index]=word ...

 set -r (+)

 set -r name ... (+)

 set -r name=word ... (+)

 The first form of the command prints the value of all shell variables. Variables

 which contain more than a single word print as a parenthesized word list. The

 second form sets name to the null string. The third form sets name to the single

 word. The fourth form sets name to the list of words in wordlist. In all cases

 the value is command and filename expanded. If -r is specified, the value is set

 read-only. If -f or -l are specified, set only unique words keeping their order.

 -f prefers the first occurrence of a word, and -l the last. The fifth form sets

 the index'th component of name to word; this component must already exist. The

 sixth form lists only the names of all shell variables that are read-only. The

 seventh form makes name read-only, whether or not it has a value. The eighth form

 is the same as the third form, but make name read-only at the same time.

 These arguments can be repeated to set and/or make read-only multiple variables in

 a single set command. Note, however, that variable expansion happens for all ar?

 guments before any setting occurs. Note also that `=' can be adjacent to both

 name and word or separated from both by whitespace, but cannot be adjacent to only

 one or the other. See also the unset builtin command.

 setenv [name [value]]

 Without arguments, prints the names and values of all environment variables.

 Given name, sets the environment variable name to value or, without value, to the

 null string.

 setpath path (+)

 Equivalent to setpath(1). (Mach only)

 setspath LOCAL|site|cpu ... (+)

 Sets the system execution path. (TCF only)

 settc cap value (+)

 Tells the shell to believe that the terminal capability cap (as defined in term?

 cap(5)) has the value value. No sanity checking is done. Concept terminal users Page 59/95

 may have to `settc xn no' to get proper wrapping at the rightmost column.

 setty [-d|-q|-x] [-a] [[+|-]mode] (+)

 Controls which tty modes (see Terminal management) the shell does not allow to

 change. -d, -q or -x tells setty to act on the `edit', `quote' or `execute' set

 of tty modes respectively; without -d, -q or -x, `execute' is used.

 Without other arguments, setty lists the modes in the chosen set which are fixed

 on (`+mode') or off (`-mode'). The available modes, and thus the display, vary

 from system to system. With -a, lists all tty modes in the chosen set whether or

 not they are fixed. With +mode, -mode or mode, fixes mode on or off or removes

 control from mode in the chosen set. For example, `setty +echok echoe' fixes

 `echok' mode on and allows commands to turn `echoe' mode on or off, both when the

 shell is executing commands.

 setxvers [string] (+)

 Set the experimental version prefix to string, or removes it if string is omitted.

 (TCF only)

 shift [variable]

 Without arguments, discards argv[1] and shifts the members of argv to the left.

 It is an error for argv not to be set or to have less than one word as value.

 With variable, performs the same function on variable.

 source [-h] name [args ...]

 The shell reads and executes commands from name. The commands are not placed on

 the history list. If any args are given, they are placed in argv. (+) source

 commands may be nested; if they are nested too deeply the shell may run out of

 file descriptors. An error in a source at any level terminates all nested source

 commands. With -h, commands are placed on the history list instead of being exe?

 cuted, much like `history -L'.

 stop %job|pid ...

 Stops the specified jobs or processes which are executing in the background. job

 may be a number, a string, `', `%', `+' or `-' as described under Jobs. There is

 no default job; saying just `stop' does not stop the current job.

 suspend Causes the shell to stop in its tracks, much as if it had been sent a stop signal

 with ^Z. This is most often used to stop shells started by su(1).

 switch (string) Page 60/95

 case str1:

 ...

 breaksw

 ...

 default:

 ...

 breaksw

 endsw Each case label is successively matched, against the specified string which is

 first command and filename expanded. The file metacharacters `*', `?' and `[...]'

 may be used in the case labels, which are variable expanded. If none of the la?

 bels match before a `default' label is found, then the execution begins after the

 default label. Each case label and the default label must appear at the beginning

 of a line. The command breaksw causes execution to continue after the endsw.

 Otherwise control may fall through case labels and default labels as in C. If no

 label matches and there is no default, execution continues after the endsw.

 telltc (+)

 Lists the values of all terminal capabilities (see termcap(5)).

 termname [terminal type] (+)

 Tests if terminal type (or the current value of TERM if no terminal type is given)

 has an entry in the hosts termcap(5) or terminfo(5) database. Prints the terminal

 type to stdout and returns 0 if an entry is present otherwise returns 1.

 time [command]

 Executes command (which must be a simple command, not an alias, a pipeline, a com?

 mand list or a parenthesized command list) and prints a time summary as described

 under the time variable. If necessary, an extra shell is created to print the

 time statistic when the command completes. Without command, prints a time summary

 for the current shell and its children.

 umask [value]

 Sets the file creation mask to value, which is given in octal. Common values for

 the mask are 002, giving all access to the group and read and execute access to

 others, and 022, giving read and execute access to the group and others. Without

 value, prints the current file creation mask.

 unalias pattern Page 61/95

 Removes all aliases whose names match pattern. `unalias *' thus removes all

 aliases. It is not an error for nothing to be unaliased.

 uncomplete pattern (+)

 Removes all completions whose names match pattern. `uncomplete *' thus removes

 all completions. It is not an error for nothing to be uncompleted.

 unhash Disables use of the internal hash table to speed location of executed programs.

 universe universe (+)

 Sets the universe to universe. (Masscomp/RTU only)

 unlimit [-hf] [resource]

 Removes the limitation on resource or, if no resource is specified, all resource

 limitations. With -h, the corresponding hard limits are removed. Only the super-

 user may do this. Note that unlimit may not exit successful, since most systems

 do not allow descriptors to be unlimited. With -f errors are ignored.

 unset pattern

 Removes all variables whose names match pattern, unless they are read-only. `un?

 set *' thus removes all variables unless they are read-only; this is a bad idea.

 It is not an error for nothing to be unset.

 unsetenv pattern

 Removes all environment variables whose names match pattern. `unsetenv *' thus

 removes all environment variables; this is a bad idea. It is not an error for

 nothing to be unsetenved.

 ver [systype [command]] (+)

 Without arguments, prints SYSTYPE. With systype, sets SYSTYPE to systype. With

 systype and command, executes command under systype. systype may be `bsd4.3' or

 `sys5.3'. (Domain/OS only)

 wait The shell waits for all background jobs. If the shell is interactive, an inter?

 rupt will disrupt the wait and cause the shell to print the names and job numbers

 of all outstanding jobs.

 warp universe (+)

 Sets the universe to universe. (Convex/OS only)

 watchlog (+)

 An alternate name for the log builtin command (q.v.). Available only if the shell

 was so compiled; see the version shell variable. Page 62/95

 where command (+)

 Reports all known instances of command, including aliases, builtins and executa?

 bles in path.

 which command (+)

 Displays the command that will be executed by the shell after substitutions, path

 searching, etc. The builtin command is just like which(1), but it correctly re?

 ports tcsh aliases and builtins and is 10 to 100 times faster. See also the

 which-command editor command.

 while (expr)

 ...

 end Executes the commands between the while and the matching end while expr (an ex?

 pression, as described under Expressions) evaluates non-zero. while and end must

 appear alone on their input lines. break and continue may be used to terminate or

 continue the loop prematurely. If the input is a terminal, the user is prompted

 the first time through the loop as with foreach.

 Special aliases (+)

 If set, each of these aliases executes automatically at the indicated time. They are all

 initially undefined.

 beepcmd Runs when the shell wants to ring the terminal bell.

 cwdcmd Runs after every change of working directory. For example, if the user is working

 on an X window system using xterm(1) and a re-parenting window manager that sup?

 ports title bars such as twm(1) and does

 > alias cwdcmd 'echo -n "^[]2;${HOST}:$cwd ^G"'

 then the shell will change the title of the running xterm(1) to be the name of the

 host, a colon, and the full current working directory. A fancier way to do that

 is

 > alias cwdcmd 'echo -n "^[]2;${HOST}:$cwd^G^[]1;${HOST}^G"'

 This will put the hostname and working directory on the title bar but only the

 hostname in the icon manager menu.

 Note that putting a cd, pushd or popd in cwdcmd may cause an infinite loop. It is

 the author's opinion that anyone doing so will get what they deserve.

 jobcmd Runs before each command gets executed, or when the command changes state. This

 is similar to postcmd, but it does not print builtins. Page 63/95

 > alias jobcmd 'echo -n "^[]2\;\!#:q^G"'

 then executing vi foo.c will put the command string in the xterm title bar.

 helpcommand

 Invoked by the run-help editor command. The command name for which help is sought

 is passed as sole argument. For example, if one does

 > alias helpcommand '\!:1 --help'

 then the help display of the command itself will be invoked, using the GNU help

 calling convention. Currently there is no easy way to account for various calling

 conventions (e.g., the customary Unix `-h'), except by using a table of many com?

 mands.

 periodic

 Runs every tperiod minutes. This provides a convenient means for checking on com?

 mon but infrequent changes such as new mail. For example, if one does

 > set tperiod = 30

 > alias periodic checknews

 then the checknews(1) program runs every 30 minutes. If periodic is set but tpe?

 riod is unset or set to 0, periodic behaves like precmd.

 precmd Runs just before each prompt is printed. For example, if one does

 > alias precmd date

 then date(1) runs just before the shell prompts for each command. There are no

 limits on what precmd can be set to do, but discretion should be used.

 postcmd Runs before each command gets executed.

 > alias postcmd 'echo -n "^[]2\;\!#:q^G"'

 then executing vi foo.c will put the command string in the xterm title bar.

 shell Specifies the interpreter for executable scripts which do not themselves specify

 an interpreter. The first word should be a full path name to the desired inter?

 preter (e.g., `/bin/csh' or `/usr/local/bin/tcsh').

 Special shell variables

 The variables described in this section have special meaning to the shell.

 The shell sets addsuffix, argv, autologout, csubstnonl, command, echo_style, edit, gid,

 group, home, loginsh, oid, path, prompt, prompt2, prompt3, shell, shlvl, tcsh, term, tty,

 uid, user and version at startup; they do not change thereafter unless changed by the

 user. The shell updates cwd, dirstack, owd and status when necessary, and sets logout on Page 64/95

 logout.

 The shell synchronizes group, home, path, shlvl, term and user with the environment vari?

 ables of the same names: whenever the environment variable changes the shell changes the

 corresponding shell variable to match (unless the shell variable is read-only) and vice

 versa. Note that although cwd and PWD have identical meanings, they are not synchronized

 in this manner, and that the shell automatically converts between the different formats of

 path and PATH.

 addsuffix (+)

 If set, filename completion adds `/' to the end of directories and a space to the

 end of normal files when they are matched exactly. Set by default.

 afsuser (+)

 If set, autologout's autolock feature uses its value instead of the local username

 for kerberos authentication.

 ampm (+)

 If set, all times are shown in 12-hour AM/PM format.

 anyerror (+)

 This variable selects what is propagated to the value of the status variable. For

 more information see the description of the status variable below.

 argv The arguments to the shell. Positional parameters are taken from argv, i.e., `$1'

 is replaced by `$argv[1]', etc. Set by default, but usually empty in interactive

 shells.

 autocorrect (+)

 If set, the spell-word editor command is invoked automatically before each comple?

 tion attempt.

 autoexpand (+)

 If set, the expand-history editor command is invoked automatically before each

 completion attempt. If this is set to onlyhistory, then only history will be ex?

 panded and a second completion will expand filenames.

 autolist (+)

 If set, possibilities are listed after an ambiguous completion. If set to `am?

 biguous', possibilities are listed only when no new characters are added by com?

 pletion.

 autologout (+) Page 65/95

 The first word is the number of minutes of inactivity before automatic logout.

 The optional second word is the number of minutes of inactivity before automatic

 locking. When the shell automatically logs out, it prints `auto-logout', sets the

 variable logout to `automatic' and exits. When the shell automatically locks, the

 user is required to enter his password to continue working. Five incorrect at?

 tempts result in automatic logout. Set to `60' (automatic logout after 60 min?

 utes, and no locking) by default in login and superuser shells, but not if the

 shell thinks it is running under a window system (i.e., the DISPLAY environment

 variable is set), the tty is a pseudo-tty (pty) or the shell was not so compiled

 (see the version shell variable). See also the afsuser and logout shell vari?

 ables.

 autorehash (+)

 If set, the internal hash table of the contents of the directories in the path

 variable will be recomputed if a command is not found in the hash table. In addi?

 tion, the list of available commands will be rebuilt for each command completion

 or spelling correction attempt if set to `complete' or `correct' respectively; if

 set to `always', this will be done for both cases.

 backslash_quote (+)

 If set, backslashes (`\') always quote `\', `'', and `"'. This may make complex

 quoting tasks easier, but it can cause syntax errors in csh(1) scripts.

 catalog The file name of the message catalog. If set, tcsh use `tcsh.${catalog}' as a

 message catalog instead of default `tcsh'.

 cdpath A list of directories in which cd should search for subdirectories if they aren't

 found in the current directory.

 cdtohome (+)

 If not set, cd requires a directory name, and will not go to the home directory if

 it's omitted. This is set by default.

 color If set, it enables color display for the builtin ls-F and it passes --color=auto

 to ls. Alternatively, it can be set to only ls-F or only ls to enable color to

 only one command. Setting it to nothing is equivalent to setting it to (ls-F ls).

 colorcat

 If set, it enables color escape sequence for NLS message files. And display col?

 orful NLS messages. Page 66/95

 command (+)

 If set, the command which was passed to the shell with the -c flag (q.v.).

 compat_expr (+)

 If set, the shell will evaluate expressions right to left, like the original csh.

 complete (+)

 If set to `igncase', the completion becomes case insensitive. If set to `en?

 hance', completion ignores case and considers hyphens and underscores to be equiv?

 alent; it will also treat periods, hyphens and underscores (`.', `-' and `_') as

 word separators. If set to `Enhance', completion matches uppercase and underscore

 characters explicitly and matches lowercase and hyphens in a case-insensitive man?

 ner; it will treat periods, hyphens and underscores as word separators.

 continue (+)

 If set to a list of commands, the shell will continue the listed commands, instead

 of starting a new one.

 continue_args (+)

 Same as continue, but the shell will execute:

 echo `pwd` $argv > ~/.<cmd>_pause; %<cmd>

 correct (+)

 If set to `cmd', commands are automatically spelling-corrected. If set to `com?

 plete', commands are automatically completed. If set to `all', the entire command

 line is corrected.

 csubstnonl (+)

 If set, newlines and carriage returns in command substitution are replaced by spa?

 ces. Set by default.

 cwd The full pathname of the current directory. See also the dirstack and owd shell

 variables.

 dextract (+)

 If set, `pushd +n' extracts the nth directory from the directory stack rather than

 rotating it to the top.

 dirsfile (+)

 The default location in which `dirs -S' and `dirs -L' look for a history file. If

 unset, ~/.cshdirs is used. Because only ~/.tcshrc is normally sourced before

 ~/.cshdirs, dirsfile should be set in ~/.tcshrc rather than ~/.login. Page 67/95

 dirstack (+)

 An array of all the directories on the directory stack. `$dirstack[1]' is the

 current working directory, `$dirstack[2]' the first directory on the stack, etc.

 Note that the current working directory is `$dirstack[1]' but `=0' in directory

 stack substitutions, etc. One can change the stack arbitrarily by setting

 dirstack, but the first element (the current working directory) is always correct.

 See also the cwd and owd shell variables.

 dspmbyte (+)

 Has an effect iff 'dspm' is listed as part of the version shell variable. If set

 to `euc', it enables display and editing EUC-kanji(Japanese) code. If set to

 `sjis', it enables display and editing Shift-JIS(Japanese) code. If set to

 `big5', it enables display and editing Big5(Chinese) code. If set to `utf8', it

 enables display and editing Utf8(Unicode) code. If set to the following format,

 it enables display and editing of original multi-byte code format:

 > set dspmbyte = 0000....(256 bytes)....0000

 The table requires just 256 bytes. Each character of 256 characters corresponds

 (from left to right) to the ASCII codes 0x00, 0x01, ... 0xff. Each character is

 set to number 0,1,2 and 3. Each number has the following meaning:

 0 ... not used for multi-byte characters.

 1 ... used for the first byte of a multi-byte character.

 2 ... used for the second byte of a multi-byte character.

 3 ... used for both the first byte and second byte of a multi-byte character.

 Example:

 If set to `001322', the first character (means 0x00 of the ASCII code) and second

 character (means 0x01 of ASCII code) are set to `0'. Then, it is not used for

 multi-byte characters. The 3rd character (0x02) is set to '1', indicating that it

 is used for the first byte of a multi-byte character. The 4th character(0x03) is

 set '3'. It is used for both the first byte and the second byte of a multi-byte

 character. The 5th and 6th characters (0x04,0x05) are set to '2', indicating that

 they are used for the second byte of a multi-byte character.

 The GNU fileutils version of ls cannot display multi-byte filenames without the -N

 (--literal) option. If you are using this version, set the second word of

 dspmbyte to "ls". If not, for example, "ls-F -l" cannot display multi-byte file? Page 68/95

 names.

 Note:

 This variable can only be used if KANJI and DSPMBYTE has been defined at compile

 time.

 dunique (+)

 If set, pushd removes any instances of name from the stack before pushing it onto

 the stack.

 echo If set, each command with its arguments is echoed just before it is executed. For

 non-builtin commands all expansions occur before echoing. Builtin commands are

 echoed before command and filename substitution, because these substitutions are

 then done selectively. Set by the -x command line option.

 echo_style (+)

 The style of the echo builtin. May be set to

 bsd Don't echo a newline if the first argument is `-n'; the default for csh.

 sysv Recognize backslashed escape sequences in echo strings.

 both Recognize both the `-n' flag and backslashed escape sequences; the default

 for tcsh.

 none Recognize neither.

 Set by default to the local system default. The BSD and System V options are de?

 scribed in the echo(1) man pages on the appropriate systems.

 edit (+)

 If set, the command-line editor is used. Set by default in interactive shells.

 editors (+)

 A list of command names for the run-fg-editor editor command to match. If not

 set, the EDITOR (`ed' if unset) and VISUAL (`vi' if unset) environment variables

 will be used instead.

 ellipsis (+)

 If set, the `%c'/`%.' and `%C' prompt sequences (see the prompt shell variable)

 indicate skipped directories with an ellipsis (`...') instead of `/<skipped>'.

 euid (+)

 The user's effective user ID.

 euser (+)

 The first matching passwd entry name corresponding to the effective user ID. Page 69/95

 fignore (+)

 Lists file name suffixes to be ignored by completion.

 filec In tcsh, completion is always used and this variable is ignored by default. If

 edit is unset, then the traditional csh completion is used. If set in csh, file?

 name completion is used.

 gid (+) The user's real group ID.

 globdot (+)

 If set, wild-card glob patterns will match files and directories beginning with

 `.' except for `.' and `..'

 globstar (+)

 If set, the `**' and `***' file glob patterns will match any string of characters

 including `/' traversing any existing sub-directories. (e.g. `ls **.c' will list

 all the .c files in the current directory tree). If used by itself, it will match

 zero or more sub-directories (e.g. `ls /usr/include/**/time.h' will list any file

 named `time.h' in the /usr/include directory tree; whereas `ls /usr/in?

 clude/**time.h' will match any file in the /usr/include directory tree ending in

 `time.h'). To prevent problems with recursion, the `**' glob-pattern will not de?

 scend into a symbolic link containing a directory. To override this, use `***'

 group (+)

 The user's group name.

 highlight

 If set, the incremental search match (in i-search-back and i-search-fwd) and the

 region between the mark and the cursor are highlighted in reverse video.

 Highlighting requires more frequent terminal writes, which introduces extra over?

 head. If you care about terminal performance, you may want to leave this unset.

 histchars

 A string value determining the characters used in History substitution (q.v.).

 The first character of its value is used as the history substitution character,

 replacing the default character `!'. The second character of its value replaces

 the character `^' in quick substitutions.

 histdup (+)

 Controls handling of duplicate entries in the history list. If set to `all' only

 unique history events are entered in the history list. If set to `prev' and the Page 70/95

 last history event is the same as the current command, then the current command is

 not entered in the history. If set to `erase' and the same event is found in the

 history list, that old event gets erased and the current one gets inserted. Note

 that the `prev' and `all' options renumber history events so there are no gaps.

 histfile (+)

 The default location in which `history -S' and `history -L' look for a history

 file. If unset, ~/.history is used. histfile is useful when sharing the same

 home directory between different machines, or when saving separate histories on

 different terminals. Because only ~/.tcshrc is normally sourced before ~/.his?

 tory, histfile should be set in ~/.tcshrc rather than ~/.login.

 histlit (+)

 If set, builtin and editor commands and the savehist mechanism use the literal

 (unexpanded) form of lines in the history list. See also the toggle-literal-his?

 tory editor command.

 history The first word indicates the number of history events to save. The optional sec?

 ond word (+) indicates the format in which history is printed; if not given,

 `%h\t%T\t%R\n' is used. The format sequences are described below under prompt;

 note the variable meaning of `%R'. Set to `100' by default.

 home Initialized to the home directory of the invoker. The filename expansion of `~'

 refers to this variable.

 ignoreeof

 If set to the empty string or `0' and the input device is a terminal, the end-of-

 file command (usually generated by the user by typing `^D' on an empty line)

 causes the shell to print `Use "exit" to leave tcsh.' instead of exiting. This

 prevents the shell from accidentally being killed. Historically this setting ex?

 ited after 26 successive EOF's to avoid infinite loops. If set to a number n, the

 shell ignores n - 1 consecutive end-of-files and exits on the nth. (+) If unset,

 `1' is used, i.e., the shell exits on a single `^D'.

 implicitcd (+)

 If set, the shell treats a directory name typed as a command as though it were a

 request to change to that directory. If set to verbose, the change of directory

 is echoed to the standard output. This behavior is inhibited in non-interactive

 shell scripts, or for command strings with more than one word. Changing directory Page 71/95

 takes precedence over executing a like-named command, but it is done after alias

 substitutions. Tilde and variable expansions work as expected.

 inputmode (+)

 If set to `insert' or `overwrite', puts the editor into that input mode at the be?

 ginning of each line.

 killdup (+)

 Controls handling of duplicate entries in the kill ring. If set to `all' only

 unique strings are entered in the kill ring. If set to `prev' and the last killed

 string is the same as the current killed string, then the current string is not

 entered in the ring. If set to `erase' and the same string is found in the kill

 ring, the old string is erased and the current one is inserted.

 killring (+)

 Indicates the number of killed strings to keep in memory. Set to `30' by default.

 If unset or set to less than `2', the shell will only keep the most recently

 killed string. Strings are put in the killring by the editor commands that delete

 (kill) strings of text, e.g. backward-delete-word, kill-line, etc, as well as the

 copy-region-as-kill command. The yank editor command will yank the most recently

 killed string into the command-line, while yank-pop (see Editor commands) can be

 used to yank earlier killed strings.

 listflags (+)

 If set to `x', `a' or `A', or any combination thereof (e.g., `xA'), they are used

 as flags to ls-F, making it act like `ls -xF', `ls -Fa', `ls -FA' or a combination

 (e.g., `ls -FxA'): `a' shows all files (even if they start with a `.'), `A' shows

 all files but `.' and `..', and `x' sorts across instead of down. If the second

 word of listflags is set, it is used as the path to `ls(1)'.

 listjobs (+)

 If set, all jobs are listed when a job is suspended. If set to `long', the list?

 ing is in long format.

 listlinks (+)

 If set, the ls-F builtin command shows the type of file to which each symbolic

 link points.

 listmax (+)

 The maximum number of items which the list-choices editor command will list with? Page 72/95

 out asking first.

 listmaxrows (+)

 The maximum number of rows of items which the list-choices editor command will

 list without asking first.

 loginsh (+)

 Set by the shell if it is a login shell. Setting or unsetting it within a shell

 has no effect. See also shlvl.

 logout (+)

 Set by the shell to `normal' before a normal logout, `automatic' before an auto?

 matic logout, and `hangup' if the shell was killed by a hangup signal (see Signal

 handling). See also the autologout shell variable.

 mail A list of files and directories to check for incoming mail, optionally preceded by

 a numeric word. Before each prompt, if 10 minutes have passed since the last

 check, the shell checks each file and says `You have new mail.' (or, if mail con?

 tains multiple files, `You have new mail in name.') if the filesize is greater

 than zero in size and has a modification time greater than its access time.

 If you are in a login shell, then no mail file is reported unless it has been mod?

 ified after the time the shell has started up, to prevent redundant notifications.

 Most login programs will tell you whether or not you have mail when you log in.

 If a file specified in mail is a directory, the shell will count each file within

 that directory as a separate message, and will report `You have n mails.' or `You

 have n mails in name.' as appropriate. This functionality is provided primarily

 for those systems which store mail in this manner, such as the Andrew Mail System.

 If the first word of mail is numeric it is taken as a different mail checking in?

 terval, in seconds.

 Under very rare circumstances, the shell may report `You have mail.' instead of

 `You have new mail.'

 matchbeep (+)

 If set to `never', completion never beeps. If set to `nomatch', it beeps only

 when there is no match. If set to `ambiguous', it beeps when there are multiple

 matches. If set to `notunique', it beeps when there is one exact and other longer

 matches. If unset, `ambiguous' is used.

 nobeep (+) Page 73/95

 If set, beeping is completely disabled. See also visiblebell.

 noclobber

 If set, restrictions are placed on output redirection to insure that files are not

 accidentally destroyed and that `>>' redirections refer to existing files, as de?

 scribed in the Input/output section.

 noding If set, disable the printing of `DING!' in the prompt time specifiers at the

 change of hour.

 noglob If set, Filename substitution and Directory stack substitution (q.v.) are inhib?

 ited. This is most useful in shell scripts which do not deal with filenames, or

 after a list of filenames has been obtained and further expansions are not desir?

 able.

 nokanji (+)

 If set and the shell supports Kanji (see the version shell variable), it is dis?

 abled so that the meta key can be used.

 nonomatch

 If set, a Filename substitution or Directory stack substitution (q.v.) which does

 not match any existing files is left untouched rather than causing an error. It

 is still an error for the substitution to be malformed, e.g., `echo [' still gives

 an error.

 nostat (+)

 A list of directories (or glob-patterns which match directories; see Filename sub?

 stitution) that should not be stat(2)ed during a completion operation. This is

 usually used to exclude directories which take too much time to stat(2), for exam?

 ple /afs.

 notify If set, the shell announces job completions asynchronously. The default is to

 present job completions just before printing a prompt.

 oid (+) The user's real organization ID. (Domain/OS only)

 owd (+) The old working directory, equivalent to the `-' used by cd and pushd. See also

 the cwd and dirstack shell variables.

 padhour If set, enable the printing of padding '0' for hours, in 24 and 12 hour formats.

 E.G.: 07:45:42 vs. 7:45:42.

 parseoctal

 To retain compatibily with older versions numeric variables starting with 0 are Page 74/95

 not interpreted as octal. Setting this variable enables proper octal parsing.

 path A list of directories in which to look for executable commands. A null word spec?

 ifies the current directory. If there is no path variable then only full path

 names will execute. path is set by the shell at startup from the PATH environment

 variable or, if PATH does not exist, to a system-dependent default something like

 `(/usr/local/bin /usr/bsd /bin /usr/bin .)'. The shell may put `.' first or last

 in path or omit it entirely depending on how it was compiled; see the version

 shell variable. A shell which is given neither the -c nor the -t option hashes

 the contents of the directories in path after reading ~/.tcshrc and each time path

 is reset. If one adds a new command to a directory in path while the shell is ac?

 tive, one may need to do a rehash for the shell to find it.

 printexitvalue (+)

 If set and an interactive program exits with a non-zero status, the shell prints

 `Exit status'.

 prompt The string which is printed before reading each command from the terminal. prompt

 may include any of the following formatting sequences (+), which are replaced by

 the given information:

 %/ The current working directory.

 %~ The current working directory, but with one's home directory represented by

 `~' and other users' home directories represented by `~user' as per Filename

 substitution. `~user' substitution happens only if the shell has already used

 `~user' in a pathname in the current session.

 %c[[0]n], %.[[0]n]

 The trailing component of the current working directory, or n trailing compo?

 nents if a digit n is given. If n begins with `0', the number of skipped com?

 ponents precede the trailing component(s) in the format `/<skipped>trailing'.

 If the ellipsis shell variable is set, skipped components are represented by

 an ellipsis so the whole becomes `...trailing'. `~' substitution is done as

 in `%~' above, but the `~' component is ignored when counting trailing compo?

 nents.

 %C Like %c, but without `~' substitution.

 %h, %!, !

 The current history event number. Page 75/95

 %M The full hostname.

 %m The hostname up to the first `.'.

 %S (%s)

 Start (stop) standout mode.

 %B (%b)

 Start (stop) boldfacing mode.

 %U (%u)

 Start (stop) underline mode.

 %t, %@

 The time of day in 12-hour AM/PM format.

 %T Like `%t', but in 24-hour format (but see the ampm shell variable).

 %p The `precise' time of day in 12-hour AM/PM format, with seconds.

 %P Like `%p', but in 24-hour format (but see the ampm shell variable).

 \c c is parsed as in bindkey.

 ^c c is parsed as in bindkey.

 %% A single `%'.

 %n The user name.

 %N The effective user name.

 %j The number of jobs.

 %d The weekday in `Day' format.

 %D The day in `dd' format.

 %w The month in `Mon' format.

 %W The month in `mm' format.

 %y The year in `yy' format.

 %Y The year in `yyyy' format.

 %l The shell's tty.

 %L Clears from the end of the prompt to end of the display or the end of the

 line.

 %$ Expands the shell or environment variable name immediately after the `$'.

 %# `>' (or the first character of the promptchars shell variable) for normal

 users, `#' (or the second character of promptchars) for the superuser.

 %{string%}

 Includes string as a literal escape sequence. It should be used only to Page 76/95

 change terminal attributes and should not move the cursor location. This can?

 not be the last sequence in prompt.

 %? The return code of the command executed just before the prompt.

 %R In prompt2, the status of the parser. In prompt3, the corrected string. In

 history, the history string.

 `%B', `%S', `%U' and `%{string%}' are available in only eight-bit-clean shells;

 see the version shell variable.

 The bold, standout and underline sequences are often used to distinguish a supe?

 ruser shell. For example,

 > set prompt = "%m [%h] %B[%@]%b [%/] you rang? "

 tut [37] [2:54pm] [/usr/accts/sys] you rang? _

 If `%t', `%@', `%T', `%p', or `%P' is used, and noding is not set, then print

 `DING!' on the change of hour (i.e, `:00' minutes) instead of the actual time.

 Set by default to `%# ' in interactive shells.

 prompt2 (+)

 The string with which to prompt in while and foreach loops and after lines ending

 in `\'. The same format sequences may be used as in prompt (q.v.); note the vari?

 able meaning of `%R'. Set by default to `%R? ' in interactive shells.

 prompt3 (+)

 The string with which to prompt when confirming automatic spelling correction.

 The same format sequences may be used as in prompt (q.v.); note the variable mean?

 ing of `%R'. Set by default to `CORRECT>%R (y|n|e|a)? ' in interactive shells.

 promptchars (+)

 If set (to a two-character string), the `%#' formatting sequence in the prompt

 shell variable is replaced with the first character for normal users and the sec?

 ond character for the superuser.

 pushdtohome (+)

 If set, pushd without arguments does `pushd ~', like cd.

 pushdsilent (+)

 If set, pushd and popd do not print the directory stack.

 recexact (+)

 If set, completion completes on an exact match even if a longer match is possible.

 recognize_only_executables (+) Page 77/95

 If set, command listing displays only files in the path that are executable.

 Slow.

 rmstar (+)

 If set, the user is prompted before `rm *' is executed.

 rprompt (+)

 The string to print on the right-hand side of the screen (after the command input)

 when the prompt is being displayed on the left. It recognizes the same formatting

 characters as prompt. It will automatically disappear and reappear as necessary,

 to ensure that command input isn't obscured, and will appear only if the prompt,

 command input, and itself will fit together on the first line. If edit isn't set,

 then rprompt will be printed after the prompt and before the command input.

 savedirs (+)

 If set, the shell does `dirs -S' before exiting. If the first word is set to a

 number, at most that many directory stack entries are saved.

 savehist

 If set, the shell does `history -S' before exiting. If the first word is set to a

 number, at most that many lines are saved. (The number should be less than or

 equal to the number history entries; if it is set to greater than the number of

 history settings, only history entries will be saved) If the second word is set to

 `merge', the history list is merged with the existing history file instead of re?

 placing it (if there is one) and sorted by time stamp and the most recent events

 are retained. If the second word of savehist is `merge' and the third word is set

 to `lock', the history file update will be serialized with other shell sessions

 that would possibly like to merge history at exactly the same time. (+)

 sched (+)

 The format in which the sched builtin command prints scheduled events; if not

 given, `%h\t%T\t%R\n' is used. The format sequences are described above under

 prompt; note the variable meaning of `%R'.

 shell The file in which the shell resides. This is used in forking shells to interpret

 files which have execute bits set, but which are not executable by the system.

 (See the description of Builtin and non-builtin command execution.) Initialized

 to the (system-dependent) home of the shell.

 shlvl (+) Page 78/95

 The number of nested shells. Reset to 1 in login shells. See also loginsh.

 status The exit status from the last command or backquote expansion, or any command in a

 pipeline is propagated to status. (This is also the default csh behavior.) This

 default does not match what POSIX mandates (to return the status of the last com?

 mand only). To match the POSIX behavior, you need to unset anyerror.

 If the anyerror variable is unset, the exit status of a pipeline is determined

 only from the last command in the pipeline, and the exit status of a backquote ex?

 pansion is not propagated to status.

 If a command terminated abnormally, then 0200 is added to the status. Builtin

 commands which fail return exit status `1', all other builtin commands return sta?

 tus `0'.

 symlinks (+)

 Can be set to several different values to control symbolic link (`symlink') reso?

 lution:

 If set to `chase', whenever the current directory changes to a directory contain?

 ing a symbolic link, it is expanded to the real name of the directory to which the

 link points. This does not work for the user's home directory; this is a bug.

 If set to `ignore', the shell tries to construct a current directory relative to

 the current directory before the link was crossed. This means that cding through

 a symbolic link and then `cd ..'ing returns one to the original directory. This

 affects only builtin commands and filename completion.

 If set to `expand', the shell tries to fix symbolic links by actually expanding

 arguments which look like path names. This affects any command, not just

 builtins. Unfortunately, this does not work for hard-to-recognize filenames, such

 as those embedded in command options. Expansion may be prevented by quoting.

 While this setting is usually the most convenient, it is sometimes misleading and

 sometimes confusing when it fails to recognize an argument which should be ex?

 panded. A compromise is to use `ignore' and use the editor command normalize-path

 (bound by default to ^X-n) when necessary.

 Some examples are in order. First, let's set up some play directories:

 > cd /tmp

 > mkdir from from/src to

 > ln -s from/src to/dst Page 79/95

 Here's the behavior with symlinks unset,

 > cd /tmp/to/dst; echo $cwd

 /tmp/to/dst

 > cd ..; echo $cwd

 /tmp/from

 here's the behavior with symlinks set to `chase',

 > cd /tmp/to/dst; echo $cwd

 /tmp/from/src

 > cd ..; echo $cwd

 /tmp/from

 here's the behavior with symlinks set to `ignore',

 > cd /tmp/to/dst; echo $cwd

 /tmp/to/dst

 > cd ..; echo $cwd

 /tmp/to

 and here's the behavior with symlinks set to `expand'.

 > cd /tmp/to/dst; echo $cwd

 /tmp/to/dst

 > cd ..; echo $cwd

 /tmp/to

 > cd /tmp/to/dst; echo $cwd

 /tmp/to/dst

 > cd ".."; echo $cwd

 /tmp/from

 > /bin/echo ..

 /tmp/to

 > /bin/echo ".."

 ..

 Note that `expand' expansion 1) works just like `ignore' for builtins like cd, 2)

 is prevented by quoting, and 3) happens before filenames are passed to non-builtin

 commands.

 tcsh (+)

 The version number of the shell in the format `R.VV.PP', where `R' is the major Page 80/95

 release number, `VV' the current version and `PP' the patchlevel.

 term The terminal type. Usually set in ~/.login as described under Startup and shut?

 down.

 time If set to a number, then the time builtin (q.v.) executes automatically after each

 command which takes more than that many CPU seconds. If there is a second word,

 it is used as a format string for the output of the time builtin. (u) The follow?

 ing sequences may be used in the format string:

 %U The time the process spent in user mode in cpu seconds.

 %S The time the process spent in kernel mode in cpu seconds.

 %E The elapsed (wall clock) time in seconds.

 %P The CPU percentage computed as (%U + %S) / %E.

 %W Number of times the process was swapped.

 %X The average amount in (shared) text space used in Kbytes.

 %D The average amount in (unshared) data/stack space used in Kbytes.

 %K The total space used (%X + %D) in Kbytes.

 %M The maximum memory the process had in use at any time in Kbytes.

 %F The number of major page faults (page needed to be brought from disk).

 %R The number of minor page faults.

 %I The number of input operations.

 %O The number of output operations.

 %r The number of socket messages received.

 %s The number of socket messages sent.

 %k The number of signals received.

 %w The number of voluntary context switches (waits).

 %c The number of involuntary context switches.

 Only the first four sequences are supported on systems without BSD resource limit

 functions. The default time format is `%Uu %Ss %E %P %X+%Dk %I+%Oio %Fpf+%Ww' for

 systems that support resource usage reporting and `%Uu %Ss %E %P' for systems that

 do not.

 Under Sequent's DYNIX/ptx, %X, %D, %K, %r and %s are not available, but the fol?

 lowing additional sequences are:

 %Y The number of system calls performed.

 %Z The number of pages which are zero-filled on demand. Page 81/95

 %i The number of times a process's resident set size was increased by the kernel.

 %d The number of times a process's resident set size was decreased by the kernel.

 %l The number of read system calls performed.

 %m The number of write system calls performed.

 %p The number of reads from raw disk devices.

 %q The number of writes to raw disk devices.

 and the default time format is `%Uu %Ss %E %P %I+%Oio %Fpf+%Ww'. Note that the

 CPU percentage can be higher than 100% on multi-processors.

 tperiod (+)

 The period, in minutes, between executions of the periodic special alias.

 tty (+) The name of the tty, or empty if not attached to one.

 uid (+) The user's real user ID.

 user The user's login name.

 verbose If set, causes the words of each command to be printed, after history substitution

 (if any). Set by the -v command line option.

 version (+)

 The version ID stamp. It contains the shell's version number (see tcsh), origin,

 release date, vendor, operating system and machine (see VENDOR, OSTYPE and

 MACHTYPE) and a comma-separated list of options which were set at compile time.

 Options which are set by default in the distribution are noted.

 8b The shell is eight bit clean; default

 7b The shell is not eight bit clean

 wide The shell is multibyte encoding clean (like UTF-8)

 nls The system's NLS is used; default for systems with NLS

 lf Login shells execute /etc/csh.login before instead of after /etc/csh.cshrc

 and ~/.login before instead of after ~/.tcshrc and ~/.history.

 dl `.' is put last in path for security; default

 nd `.' is omitted from path for security

 vi vi(1)-style editing is the default rather than emacs(1)-style

 dtr Login shells drop DTR when exiting

 bye bye is a synonym for logout and log is an alternate name for watchlog

 al autologout is enabled; default

 kan Kanji is used if appropriate according to locale settings, unless the Page 82/95

 nokanji shell variable is set

 sm The system's malloc(3) is used

 hb The `#!<program> <args>' convention is emulated when executing shell scripts

 ng The newgrp builtin is available

 rh The shell attempts to set the REMOTEHOST environment variable

 afs The shell verifies your password with the kerberos server if local authenti?

 cation fails. The afsuser shell variable or the AFSUSER environment vari?

 able override your local username if set.

 An administrator may enter additional strings to indicate differences in the local

 version.

 vimode (+)

 If unset, various key bindings change behavior to be more emacs(1)-style: word

 boundaries are determined by wordchars versus other characters.

 If set, various key bindings change behavior to be more vi(1)-style: word bound?

 aries are determined by wordchars versus whitespace versus other characters; cur?

 sor behavior depends upon current vi mode (command, delete, insert, replace).

 This variable is unset by bindkey -e and set by bindkey -v. vimode may be explic?

 itly set or unset by the user after those bindkey operations if required.

 visiblebell (+)

 If set, a screen flash is used rather than the audible bell. See also nobeep.

 watch (+)

 A list of user/terminal pairs to watch for logins and logouts. If either the user

 is `any' all terminals are watched for the given user and vice versa. Setting

 watch to `(any any)' watches all users and terminals. For example,

 set watch = (george ttyd1 any console $user any)

 reports activity of the user `george' on ttyd1, any user on the console, and one?

 self (or a trespasser) on any terminal.

 Logins and logouts are checked every 10 minutes by default, but the first word of

 watch can be set to a number to check every so many minutes. For example,

 set watch = (1 any any)

 reports any login/logout once every minute. For the impatient, the log builtin

 command triggers a watch report at any time. All current logins are reported (as

 with the log builtin) when watch is first set. Page 83/95

 The who shell variable controls the format of watch reports.

 who (+) The format string for watch messages. The following sequences are replaced by the

 given information:

 %n The name of the user who logged in/out.

 %a The observed action, i.e., `logged on', `logged off' or `replaced olduser on'.

 %l The terminal (tty) on which the user logged in/out.

 %M The full hostname of the remote host, or `local' if the login/logout was from

 the local host.

 %m The hostname of the remote host up to the first `.'. The full name is printed

 if it is an IP address or an X Window System display.

 %M and %m are available on only systems that store the remote hostname in

 /etc/utmp. If unset, `%n has %a %l from %m.' is used, or `%n has %a %l.' on sys?

 tems which don't store the remote hostname.

 wordchars (+)

 A list of non-alphanumeric characters to be considered part of a word by the for?

 ward-word, backward-word etc., editor commands. If unset, the default value is

 determined based on the state of vimode: if vimode is unset, `*?_-.[]~=' is used

 as the default; if vimode is set, `_' is used as the default.

ENVIRONMENT

 AFSUSER (+)

 Equivalent to the afsuser shell variable.

 COLUMNS The number of columns in the terminal. See Terminal management.

 DISPLAY Used by X Window System (see X(1)). If set, the shell does not set autologout

 (q.v.).

 EDITOR The pathname to a default editor. Used by the run-fg-editor editor command if the

 the editors shell variable is unset. See also the VISUAL environment variable.

 GROUP (+)

 Equivalent to the group shell variable.

 HOME Equivalent to the home shell variable.

 HOST (+)

 Initialized to the name of the machine on which the shell is running, as deter?

 mined by the gethostname(2) system call.

 HOSTTYPE (+) Page 84/95

 Initialized to the type of machine on which the shell is running, as determined at

 compile time. This variable is obsolete and will be removed in a future version.

 HPATH (+)

 A colon-separated list of directories in which the run-help editor command looks

 for command documentation.

 LANG Gives the preferred character environment. See Native Language System support.

 LC_CTYPE

 If set, only ctype character handling is changed. See Native Language System sup?

 port.

 LINES The number of lines in the terminal. See Terminal management.

 LS_COLORS

 The format of this variable is reminiscent of the termcap(5) file format; a colon-

 separated list of expressions of the form "xx=string", where "xx" is a two-charac?

 ter variable name. The variables with their associated defaults are:

 no 0 Normal (non-filename) text

 fi 0 Regular file

 di 01;34 Directory

 ln 01;36 Symbolic link

 pi 33 Named pipe (FIFO)

 so 01;35 Socket

 do 01;35 Door

 bd 01;33 Block device

 cd 01;32 Character device

 ex 01;32 Executable file

 mi (none) Missing file (defaults to fi)

 or (none) Orphaned symbolic link (defaults to ln)

 lc ^[[Left code

 rc m Right code

 ec (none) End code (replaces lc+no+rc)

 You need to include only the variables you want to change from the default.

 File names can also be colorized based on filename extension. This is specified

 in the LS_COLORS variable using the syntax "*ext=string". For example, using ISO

 6429 codes, to color all C-language source files blue you would specify "*.c=34". Page 85/95

 This would color all files ending in .c in blue (34) color.

 Control characters can be written either in C-style-escaped notation, or in

 stty-like ^-notation. The C-style notation adds ^[for Escape, _ for a normal

 space character, and ? for Delete. In addition, the ^[escape character can be

 used to override the default interpretation of ^[, ^, : and =.

 Each file will be written as <lc> <color-code> <rc> <filename> <ec>. If the <ec>

 code is undefined, the sequence <lc> <no> <rc> will be used instead. This is gen?

 erally more convenient to use, but less general. The left, right and end codes

 are provided so you don't have to type common parts over and over again and to

 support weird terminals; you will generally not need to change them at all unless

 your terminal does not use ISO 6429 color sequences but a different system.

 If your terminal does use ISO 6429 color codes, you can compose the type codes

 (i.e., all except the lc, rc, and ec codes) from numerical commands separated by

 semicolons. The most common commands are:

 0 to restore default color

 1 for brighter colors

 4 for underlined text

 5 for flashing text

 30 for black foreground

 31 for red foreground

 32 for green foreground

 33 for yellow (or brown) foreground

 34 for blue foreground

 35 for purple foreground

 36 for cyan foreground

 37 for white (or gray) foreground

 40 for black background

 41 for red background

 42 for green background

 43 for yellow (or brown) background

 44 for blue background

 45 for purple background

 46 for cyan background Page 86/95

 47 for white (or gray) background

 Not all commands will work on all systems or display devices.

 A few terminal programs do not recognize the default end code properly. If all

 text gets colorized after you do a directory listing, try changing the no and fi

 codes from 0 to the numerical codes for your standard fore- and background colors.

 MACHTYPE (+)

 The machine type (microprocessor class or machine model), as determined at compile

 time.

 NOREBIND (+)

 If set, printable characters are not rebound to self-insert-command. See Native

 Language System support.

 OSTYPE (+)

 The operating system, as determined at compile time.

 PATH A colon-separated list of directories in which to look for executables. Equiva?

 lent to the path shell variable, but in a different format.

 PWD (+) Equivalent to the cwd shell variable, but not synchronized to it; updated only af?

 ter an actual directory change.

 REMOTEHOST (+)

 The host from which the user has logged in remotely, if this is the case and the

 shell is able to determine it. Set only if the shell was so compiled; see the

 version shell variable.

 SHLVL (+)

 Equivalent to the shlvl shell variable.

 SYSTYPE (+)

 The current system type. (Domain/OS only)

 TERM Equivalent to the term shell variable.

 TERMCAP The terminal capability string. See Terminal management.

 USER Equivalent to the user shell variable.

 VENDOR (+)

 The vendor, as determined at compile time.

 VISUAL The pathname to a default full-screen editor. Used by the run-fg-editor editor

 command if the the editors shell variable is unset. See also the EDITOR environ?

 ment variable. Page 87/95

FILES

 /etc/csh.cshrc Read first by every shell. ConvexOS, Stellix and Intel use /etc/cshrc and

 NeXTs use /etc/cshrc.std. A/UX, AMIX, Cray and IRIX have no equivalent in

 csh(1), but read this file in tcsh anyway. Solaris 2.x does not have it

 either, but tcsh reads /etc/.cshrc. (+)

 /etc/csh.login Read by login shells after /etc/csh.cshrc. ConvexOS, Stellix and Intel

 use /etc/login, NeXTs use /etc/login.std, Solaris 2.x uses /etc/.login and

 A/UX, AMIX, Cray and IRIX use /etc/cshrc.

 ~/.tcshrc (+) Read by every shell after /etc/csh.cshrc or its equivalent.

 ~/.cshrc Read by every shell, if ~/.tcshrc doesn't exist, after /etc/csh.cshrc or

 its equivalent. This manual uses `~/.tcshrc' to mean `~/.tcshrc or, if

 ~/.tcshrc is not found, ~/.cshrc'.

 ~/.history Read by login shells after ~/.tcshrc if savehist is set, but see also

 histfile.

 ~/.login Read by login shells after ~/.tcshrc or ~/.history. The shell may be com?

 piled to read ~/.login before instead of after ~/.tcshrc and ~/.history;

 see the version shell variable.

 ~/.cshdirs (+) Read by login shells after ~/.login if savedirs is set, but see also dirs?

 file.

 /etc/csh.logout Read by login shells at logout. ConvexOS, Stellix and Intel use /etc/lo?

 gout and NeXTs use /etc/logout.std. A/UX, AMIX, Cray and IRIX have no

 equivalent in csh(1), but read this file in tcsh anyway. Solaris 2.x does

 not have it either, but tcsh reads /etc/.logout. (+)

 ~/.logout Read by login shells at logout after /etc/csh.logout or its equivalent.

 /bin/sh Used to interpret shell scripts not starting with a `#'.

 /tmp/sh* Temporary file for `<<'.

 /etc/passwd Source of home directories for `~name' substitutions.

 The order in which startup files are read may differ if the shell was so compiled; see

 Startup and shutdown and the version shell variable.

NEW FEATURES (+)

 This manual describes tcsh as a single entity, but experienced csh(1) users will want to

 pay special attention to tcsh's new features.

 A command-line editor, which supports emacs(1)-style or vi(1)-style key bindings. See The Page 88/95

 command-line editor and Editor commands.

 Programmable, interactive word completion and listing. See Completion and listing and the

 complete and uncomplete builtin commands.

 Spelling correction (q.v.) of filenames, commands and variables.

 Editor commands (q.v.) which perform other useful functions in the middle of typed com?

 mands, including documentation lookup (run-help), quick editor restarting (run-fg-editor)

 and command resolution (which-command).

 An enhanced history mechanism. Events in the history list are time-stamped. See also the

 history command and its associated shell variables, the previously undocumented `#' event

 specifier and new modifiers under History substitution, the *-history, history-search-*,

 i-search-*, vi-search-* and toggle-literal-history editor commands and the histlit shell

 variable.

 Enhanced directory parsing and directory stack handling. See the cd, pushd, popd and dirs

 commands and their associated shell variables, the description of Directory stack substi?

 tution, the dirstack, owd and symlinks shell variables and the normalize-command and nor?

 malize-path editor commands.

 Negation in glob-patterns. See Filename substitution.

 New File inquiry operators (q.v.) and a filetest builtin which uses them.

 A variety of Automatic, periodic and timed events (q.v.) including scheduled events, spe?

 cial aliases, automatic logout and terminal locking, command timing and watching for lo?

 gins and logouts.

 Support for the Native Language System (see Native Language System support), OS variant

 features (see OS variant support and the echo_style shell variable) and system-dependent

 file locations (see FILES).

 Extensive terminal-management capabilities. See Terminal management.

 New builtin commands including builtins, hup, ls-F, newgrp, printenv, which and where

 (q.v.).

 New variables that make useful information easily available to the shell. See the gid,

 loginsh, oid, shlvl, tcsh, tty, uid and version shell variables and the HOST, REMOTEHOST,

 VENDOR, OSTYPE and MACHTYPE environment variables.

 A new syntax for including useful information in the prompt string (see prompt), and spe?

 cial prompts for loops and spelling correction (see prompt2 and prompt3).

 Read-only variables. See Variable substitution. Page 89/95

BUGS

 When a suspended command is restarted, the shell prints the directory it started in if

 this is different from the current directory. This can be misleading (i.e., wrong) as the

 job may have changed directories internally.

 Shell builtin functions are not stoppable/restartable. Command sequences of the form `a ;

 b ; c' are also not handled gracefully when stopping is attempted. If you suspend `b',

 the shell will then immediately execute `c'. This is especially noticeable if this expan?

 sion results from an alias. It suffices to place the sequence of commands in ()'s to

 force it to a subshell, i.e., `(a ; b ; c)'.

 Control over tty output after processes are started is primitive; perhaps this will in?

 spire someone to work on a good virtual terminal interface. In a virtual terminal inter?

 face much more interesting things could be done with output control.

 Alias substitution is most often used to clumsily simulate shell procedures; shell proce?

 dures should be provided rather than aliases.

 Control structures should be parsed rather than being recognized as built-in commands.

 This would allow control commands to be placed anywhere, to be combined with `|', and to

 be used with `&' and `;' metasyntax.

 foreach doesn't ignore here documents when looking for its end.

 It should be possible to use the `:' modifiers on the output of command substitutions.

 The screen update for lines longer than the screen width is very poor if the terminal can?

 not move the cursor up (i.e., terminal type `dumb').

 HPATH and NOREBIND don't need to be environment variables.

 Glob-patterns which do not use `?', `*' or `[]' or which use `{}' or `~' are not negated

 correctly.

 The single-command form of if does output redirection even if the expression is false and

 the command is not executed.

 ls-F includes file identification characters when sorting filenames and does not handle

 control characters in filenames well. It cannot be interrupted.

 Command substitution supports multiple commands and conditions, but not cycles or backward

 gotos.

 Report bugs at https://bugs.astron.com/, preferably with fixes. If you want to help main?

 tain and test tcsh, add yourself to the mailing list in https://mailman.astron.com/.

THE T IN TCSH Page 90/95

 In 1964, DEC produced the PDP-6. The PDP-10 was a later re-implementation. It was re-

 christened the DECsystem-10 in 1970 or so when DEC brought out the second model, the KI10.

 TENEX was created at Bolt, Beranek & Newman (a Cambridge, Massachusetts think tank) in

 1972 as an experiment in demand-paged virtual memory operating systems. They built a new

 pager for the DEC PDP-10 and created the OS to go with it. It was extremely successful in

 academia.

 In 1975, DEC brought out a new model of the PDP-10, the KL10; they intended to have only a

 version of TENEX, which they had licensed from BBN, for the new box. They called their

 version TOPS-20 (their capitalization is trademarked). A lot of TOPS-10 users (`The OPer?

 ating System for PDP-10') objected; thus DEC found themselves supporting two incompatible

 systems on the same hardware--but then there were 6 on the PDP-11!

 TENEX, and TOPS-20 to version 3, had command completion via a user-code-level subroutine

 library called ULTCMD. With version 3, DEC moved all that capability and more into the

 monitor (`kernel' for you Unix types), accessed by the COMND% JSYS (`Jump to SYStem' in?

 struction, the supervisor call mechanism [are my IBM roots also showing?]).

 The creator of tcsh was impressed by this feature and several others of TENEX and TOPS-20,

 and created a version of csh which mimicked them.

LIMITATIONS

 The system limits argument lists to ARG_MAX characters.

 The number of arguments to a command which involves filename expansion is limited to 1/6th

 the number of characters allowed in an argument list.

 Command substitutions may substitute no more characters than are allowed in an argument

 list.

 To detect looping, the shell restricts the number of alias substitutions on a single line

 to 20.

SEE ALSO

 csh(1), emacs(1), ls(1), newgrp(1), sh(1), setpath(1), stty(1), su(1), tset(1), vi(1),

 x(1), access(2), execve(2), fork(2), killpg(2), pipe(2), setrlimit(2), sigvec(2), stat(2),

 umask(2), vfork(2), wait(2), malloc(3), setlocale(3), tty(4), a.out(5), termcap(5), envi?

 ron(7), termio(7), Introduction to the C Shell

VERSION

 This manual documents tcsh 6.21.00 (Astron) 2019-05-08.

AUTHORS Page 91/95

 William Joy

 Original author of csh(1)

 J.E. Kulp, IIASA, Laxenburg, Austria

 Job control and directory stack features

 Ken Greer, HP Labs, 1981

 File name completion

 Mike Ellis, Fairchild, 1983

 Command name recognition/completion

 Paul Placeway, Ohio State CIS Dept., 1983-1993

 Command line editor, prompt routines, new glob syntax and numerous fixes and speedups

 Karl Kleinpaste, CCI 1983-4

 Special aliases, directory stack extraction stuff, login/logout watch, scheduled events,

 and the idea of the new prompt format

 Rayan Zachariassen, University of Toronto, 1984

 ls-F and which builtins and numerous bug fixes, modifications and speedups

 Chris Kingsley, Caltech

 Fast storage allocator routines

 Chris Grevstad, TRW, 1987

 Incorporated 4.3BSD csh into tcsh

 Christos S. Zoulas, Cornell U. EE Dept., 1987-94

 Ports to HPUX, SVR2 and SVR3, a SysV version of getwd.c, SHORT_STRINGS support and a new

 version of sh.glob.c

 James J Dempsey, BBN, and Paul Placeway, OSU, 1988

 A/UX port

 Daniel Long, NNSC, 1988

 wordchars

 Patrick Wolfe, Kuck and Associates, Inc., 1988

 vi mode cleanup

 David C Lawrence, Rensselaer Polytechnic Institute, 1989

 autolist and ambiguous completion listing

 Alec Wolman, DEC, 1989

 Newlines in the prompt

 Matt Landau, BBN, 1989 Page 92/95

 ~/.tcshrc

 Ray Moody, Purdue Physics, 1989

 Magic space bar history expansion

 Mordechai ????, Intel, 1989

 printprompt() fixes and additions

 Kazuhiro Honda, Dept. of Computer Science, Keio University, 1989

 Automatic spelling correction and prompt3

 Per Hedeland, Ellemtel, Sweden, 1990-

 Various bugfixes, improvements and manual updates

 Hans J. Albertsson (Sun Sweden)

 ampm, settc and telltc

 Michael Bloom

 Interrupt handling fixes

 Michael Fine, Digital Equipment Corp

 Extended key support

 Eric Schnoebelen, Convex, 1990

 Convex support, lots of csh bug fixes, save and restore of directory stack

 Ron Flax, Apple, 1990

 A/UX 2.0 (re)port

 Dan Oscarsson, LTH Sweden, 1990

 NLS support and simulated NLS support for non NLS sites, fixes

 Johan Widen, SICS Sweden, 1990

 shlvl, Mach support, correct-line, 8-bit printing

 Matt Day, Sanyo Icon, 1990

 POSIX termio support, SysV limit fixes

 Jaap Vermeulen, Sequent, 1990-91

 Vi mode fixes, expand-line, window change fixes, Symmetry port

 Martin Boyer, Institut de recherche d'Hydro-Quebec, 1991

 autolist beeping options, modified the history search to search for the whole string

 from the beginning of the line to the cursor.

 Scott Krotz, Motorola, 1991

 Minix port

 David Dawes, Sydney U. Australia, Physics Dept., 1991 Page 93/95

 SVR4 job control fixes

 Jose Sousa, Interactive Systems Corp., 1991

 Extended vi fixes and vi delete command

 Marc Horowitz, MIT, 1991

 ANSIfication fixes, new exec hashing code, imake fixes, where

 Bruce Sterling Woodcock, sterling@netcom.com, 1991-1995

 ETA and Pyramid port, Makefile and lint fixes, ignoreeof=n addition, and various other

 portability changes and bug fixes

 Jeff Fink, 1992

 complete-word-fwd and complete-word-back

 Harry C. Pulley, 1992

 Coherent port

 Andy Phillips, Mullard Space Science Lab U.K., 1992

 VMS-POSIX port

 Beto Appleton, IBM Corp., 1992

 Walking process group fixes, csh bug fixes, POSIX file tests, POSIX SIGHUP

 Scott Bolte, Cray Computer Corp., 1992

 CSOS port

 Kaveh R. Ghazi, Rutgers University, 1992

 Tek, m88k, Titan and Masscomp ports and fixes. Added autoconf support.

 Mark Linderman, Cornell University, 1992

 OS/2 port

 Mika Liljeberg, liljeber@kruuna.Helsinki.FI, 1992

 Linux port

 Tim P. Starrin, NASA Langley Research Center Operations, 1993

 Read-only variables

 Dave Schweisguth, Yale University, 1993-4

 New man page and tcsh.man2html

 Larry Schwimmer, Stanford University, 1993

 AFS and HESIOD patches

 Luke Mewburn, RMIT University, 1994-6

 Enhanced directory printing in prompt, added ellipsis and rprompt.

 Edward Hutchins, Silicon Graphics Inc., 1996 Page 94/95

 Added implicit cd.

 Martin Kraemer, 1997

 Ported to Siemens Nixdorf EBCDIC machine

 Amol Deshpande, Microsoft, 1997

 Ported to WIN32 (Windows/95 and Windows/NT); wrote all the missing library and message

 catalog code to interface to Windows.

 Taga Nayuta, 1998

 Color ls additions.

THANKS TO

 Bryan Dunlap, Clayton Elwell, Karl Kleinpaste, Bob Manson, Steve Romig, Diana Smetters,

 Bob Sutterfield, Mark Verber, Elizabeth Zwicky and all the other people at Ohio State for

 suggestions and encouragement

 All the people on the net, for putting up with, reporting bugs in, and suggesting new ad?

 ditions to each and every version

 Richard M. Alderson III, for writing the `T in tcsh' section

Astron 6.21.00 8 May 2019 TCSH(1)

Page 95/95

