
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc.8'

$ man tc.8

TC(8) Linux TC(8)

NAME

 tc - show / manipulate traffic control settings

SYNOPSIS

 tc [OPTIONS] qdisc [add | change | replace | link | delete] dev DEV [parent qdisc-id

 | root] [handle qdisc-id] [ingress_block BLOCK_INDEX] [egress_block BLOCK_INDEX]

 qdisc [qdisc specific parameters]

 tc [OPTIONS] class [add | change | replace | delete] dev DEV parent qdisc-id [classid

 class-id] qdisc [qdisc specific parameters]

 tc [OPTIONS] filter [add | change | replace | delete | get] dev DEV [parent qdisc-id

 | root] [handle filter-id] protocol protocol prio priority filtertype [filtertype spe?

 cific parameters] flowid flow-id

 tc [OPTIONS] filter [add | change | replace | delete | get] block BLOCK_INDEX [handle

 filter-id] protocol protocol prio priority filtertype [filtertype specific parameters]

 flowid flow-id

 tc [OPTIONS] chain [add | delete | get] dev DEV [parent qdisc-id | root] filtertype

 [filtertype specific parameters]

 tc [OPTIONS] chain [add | delete | get] block BLOCK_INDEX filtertype [filtertype spe?

 cific parameters]

 tc [OPTIONS] [FORMAT] qdisc { show | list } [dev DEV] [root | ingress | handle

 QHANDLE | parent CLASSID] [invisible]

 tc [OPTIONS] [FORMAT] class show dev DEV

 tc [OPTIONS] filter show dev DEV Page 1/13

 tc [OPTIONS] filter show block BLOCK_INDEX

 tc [OPTIONS] chain show dev DEV

 tc [OPTIONS] chain show block BLOCK_INDEX

 tc [OPTIONS] monitor [file FILENAME]

 OPTIONS := { [-force] -b[atch] [filename] | [-n[etns] name] | [-N[umeric]] | [

 -nm | -nam[es]] | [{ -cf | -c[onf] } [filename]] [-t[imestamp]] | [-t[short] | [

 -o[neline]] }

 FORMAT := { -s[tatistics] | -d[etails] | -r[aw] | -i[ec] | -g[raph] | -j[json] |

 -p[retty] | -col[or] }

DESCRIPTION

 Tc is used to configure Traffic Control in the Linux kernel. Traffic Control consists of

 the following:

 SHAPING

 When traffic is shaped, its rate of transmission is under control. Shaping may be

 more than lowering the available bandwidth - it is also used to smooth out bursts

 in traffic for better network behaviour. Shaping occurs on egress.

 SCHEDULING

 By scheduling the transmission of packets it is possible to improve interactivity

 for traffic that needs it while still guaranteeing bandwidth to bulk transfers. Re?

 ordering is also called prioritizing, and happens only on egress.

 POLICING

 Whereas shaping deals with transmission of traffic, policing pertains to traffic

 arriving. Policing thus occurs on ingress.

 DROPPING

 Traffic exceeding a set bandwidth may also be dropped forthwith, both on ingress

 and on egress.

 Processing of traffic is controlled by three kinds of objects: qdiscs, classes and fil?

 ters.

QDISCS

 qdisc is short for 'queueing discipline' and it is elementary to understanding traffic

 control. Whenever the kernel needs to send a packet to an interface, it is enqueued to the

 qdisc configured for that interface. Immediately afterwards, the kernel tries to get as

 many packets as possible from the qdisc, for giving them to the network adaptor driver. Page 2/13

 A simple QDISC is the 'pfifo' one, which does no processing at all and is a pure First In,

 First Out queue. It does however store traffic when the network interface can't handle it

 momentarily.

CLASSES

 Some qdiscs can contain classes, which contain further qdiscs - traffic may then be en?

 queued in any of the inner qdiscs, which are within the classes. When the kernel tries to

 dequeue a packet from such a classful qdisc it can come from any of the classes. A qdisc

 may for example prioritize certain kinds of traffic by trying to dequeue from certain

 classes before others.

FILTERS

 A filter is used by a classful qdisc to determine in which class a packet will be en?

 queued. Whenever traffic arrives at a class with subclasses, it needs to be classified.

 Various methods may be employed to do so, one of these are the filters. All filters at?

 tached to the class are called, until one of them returns with a verdict. If no verdict

 was made, other criteria may be available. This differs per qdisc.

 It is important to notice that filters reside within qdiscs - they are not masters of what

 happens.

 The available filters are:

 basic Filter packets based on an ematch expression. See tc-ematch(8) for details.

 bpf Filter packets using (e)BPF, see tc-bpf(8) for details.

 cgroup Filter packets based on the control group of their process. See tc-cgroup(8) for

 details.

 flow, flower

 Flow-based classifiers, filtering packets based on their flow (identified by se?

 lectable keys). See tc-flow(8) and tc-flower(8) for details.

 fw Filter based on fwmark. Directly maps fwmark value to traffic class. See tc-fw(8).

 route Filter packets based on routing table. See tc-route(8) for details.

 rsvp Match Resource Reservation Protocol (RSVP) packets.

 tcindex

 Filter packets based on traffic control index. See tc-tcindex(8).

 u32 Generic filtering on arbitrary packet data, assisted by syntax to abstract common

 operations. See tc-u32(8) for details.

 matchall Page 3/13

 Traffic control filter that matches every packet. See tc-matchall(8) for details.

QEVENTS

 Qdiscs may invoke user-configured actions when certain interesting events take place in

 the qdisc. Each qevent can either be unused, or can have a block attached to it. To this

 block are then attached filters using the "tc block BLOCK_IDX" syntax. The block is exe?

 cuted when the qevent associated with the attachment point takes place. For example,

 packet could be dropped, or delayed, etc., depending on the qdisc and the qevent in ques?

 tion.

 For example:

 tc qdisc add dev eth0 root handle 1: red limit 500K avpkt 1K \

 qevent early_drop block 10

 tc filter add block 10 matchall action mirred egress mirror dev eth1

CLASSLESS QDISCS

 The classless qdiscs are:

 choke CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for unresponsive

 flows) is a classless qdisc designed to both identify and penalize flows that mo?

 nopolize the queue. CHOKe is a variation of RED, and the configuration is similar

 to RED.

 codel CoDel (pronounced "coddle") is an adaptive "no-knobs" active queue management algo?

 rithm (AQM) scheme that was developed to address the shortcomings of RED and its

 variants.

 [p|b]fifo

 Simplest usable qdisc, pure First In, First Out behaviour. Limited in packets or in

 bytes.

 fq Fair Queue Scheduler realises TCP pacing and scales to millions of concurrent flows

 per qdisc.

 fq_codel

 Fair Queuing Controlled Delay is queuing discipline that combines Fair Queuing with

 the CoDel AQM scheme. FQ_Codel uses a stochastic model to classify incoming packets

 into different flows and is used to provide a fair share of the bandwidth to all

 the flows using the queue. Each such flow is managed by the CoDel queuing disci?

 pline. Reordering within a flow is avoided since Codel internally uses a FIFO

 queue. Page 4/13

 fq_pie FQ-PIE (Flow Queuing with Proportional Integral controller Enhanced) is a queuing

 discipline that combines Flow Queuing with the PIE AQM scheme. FQ-PIE uses a Jenk?

 ins hash function to classify incoming packets into different flows and is used to

 provide a fair share of the bandwidth to all the flows using the qdisc. Each such

 flow is managed by the PIE algorithm.

 gred Generalized Random Early Detection combines multiple RED queues in order to achieve

 multiple drop priorities. This is required to realize Assured Forwarding (RFC

 2597).

 hhf Heavy-Hitter Filter differentiates between small flows and the opposite, heavy-hit?

 ters. The goal is to catch the heavy-hitters and move them to a separate queue with

 less priority so that bulk traffic does not affect the latency of critical traffic.

 ingress

 This is a special qdisc as it applies to incoming traffic on an interface, allowing

 for it to be filtered and policed.

 mqprio The Multiqueue Priority Qdisc is a simple queuing discipline that allows mapping

 traffic flows to hardware queue ranges using priorities and a configurable priority

 to traffic class mapping. A traffic class in this context is a set of contiguous

 qdisc classes which map 1:1 to a set of hardware exposed queues.

 multiq Multiqueue is a qdisc optimized for devices with multiple Tx queues. It has been

 added for hardware that wishes to avoid head-of-line blocking. It will cycle

 though the bands and verify that the hardware queue associated with the band is not

 stopped prior to dequeuing a packet.

 netem Network Emulator is an enhancement of the Linux traffic control facilities that al?

 low to add delay, packet loss, duplication and more other characteristics to pack?

 ets outgoing from a selected network interface.

 pfifo_fast

 Standard qdisc for 'Advanced Router' enabled kernels. Consists of a three-band

 queue which honors Type of Service flags, as well as the priority that may be as?

 signed to a packet.

 pie Proportional Integral controller-Enhanced (PIE) is a control theoretic active queue

 management scheme. It is based on the proportional integral controller but aims to

 control delay.

 red Random Early Detection simulates physical congestion by randomly dropping packets Page 5/13

 when nearing configured bandwidth allocation. Well suited to very large bandwidth

 applications.

 rr Round-Robin qdisc with support for multiqueue network devices. Removed from Linux

 since kernel version 2.6.27.

 sfb Stochastic Fair Blue is a classless qdisc to manage congestion based on packet loss

 and link utilization history while trying to prevent non-responsive flows (i.e.

 flows that do not react to congestion marking or dropped packets) from impacting

 performance of responsive flows. Unlike RED, where the marking probability has to

 be configured, BLUE tries to determine the ideal marking probability automatically.

 sfq Stochastic Fairness Queueing reorders queued traffic so each 'session' gets to send

 a packet in turn.

 tbf The Token Bucket Filter is suited for slowing traffic down to a precisely config?

 ured rate. Scales well to large bandwidths.

CONFIGURING CLASSLESS QDISCS

 In the absence of classful qdiscs, classless qdiscs can only be attached at the root of a

 device. Full syntax:

 tc qdisc add dev DEV root QDISC QDISC-PARAMETERS

 To remove, issue

 tc qdisc del dev DEV root

 The pfifo_fast qdisc is the automatic default in the absence of a configured qdisc.

CLASSFUL QDISCS

 The classful qdiscs are:

 ATM Map flows to virtual circuits of an underlying asynchronous transfer mode device.

 CBQ Class Based Queueing implements a rich linksharing hierarchy of classes. It con?

 tains shaping elements as well as prioritizing capabilities. Shaping is performed

 using link idle time calculations based on average packet size and underlying link

 bandwidth. The latter may be ill-defined for some interfaces.

 DRR The Deficit Round Robin Scheduler is a more flexible replacement for Stochastic

 Fairness Queuing. Unlike SFQ, there are no built-in queues -- you need to add

 classes and then set up filters to classify packets accordingly. This can be use?

 ful e.g. for using RED qdiscs with different settings for particular traffic. There

 is no default class -- if a packet cannot be classified, it is dropped.

 DSMARK Classify packets based on TOS field, change TOS field of packets based on classifi? Page 6/13

 cation.

 ETS The ETS qdisc is a queuing discipline that merges functionality of PRIO and DRR

 qdiscs in one scheduler. ETS makes it easy to configure a set of strict and band?

 width-sharing bands to implement the transmission selection described in 802.1Qaz.

 HFSC Hierarchical Fair Service Curve guarantees precise bandwidth and delay allocation

 for leaf classes and allocates excess bandwidth fairly. Unlike HTB, it makes use of

 packet dropping to achieve low delays which interactive sessions benefit from.

 HTB The Hierarchy Token Bucket implements a rich linksharing hierarchy of classes with

 an emphasis on conforming to existing practices. HTB facilitates guaranteeing band?

 width to classes, while also allowing specification of upper limits to inter-class

 sharing. It contains shaping elements, based on TBF and can prioritize classes.

 PRIO The PRIO qdisc is a non-shaping container for a configurable number of classes

 which are dequeued in order. This allows for easy prioritization of traffic, where

 lower classes are only able to send if higher ones have no packets available. To

 facilitate configuration, Type Of Service bits are honored by default.

 QFQ Quick Fair Queueing is an O(1) scheduler that provides near-optimal guarantees, and

 is the first to achieve that goal with a constant cost also with respect to the

 number of groups and the packet length. The QFQ algorithm has no loops, and uses

 very simple instructions and data structures that lend themselves very well to a

 hardware implementation.

THEORY OF OPERATION

 Classes form a tree, where each class has a single parent. A class may have multiple

 children. Some qdiscs allow for runtime addition of classes (CBQ, HTB) while others (PRIO)

 are created with a static number of children.

 Qdiscs which allow dynamic addition of classes can have zero or more subclasses to which

 traffic may be enqueued.

 Furthermore, each class contains a leaf qdisc which by default has pfifo behaviour, al?

 though another qdisc can be attached in place. This qdisc may again contain classes, but

 each class can have only one leaf qdisc.

 When a packet enters a classful qdisc it can be classified to one of the classes within.

 Three criteria are available, although not all qdiscs will use all three:

 tc filters

 If tc filters are attached to a class, they are consulted first for relevant in? Page 7/13

 structions. Filters can match on all fields of a packet header, as well as on the

 firewall mark applied by iptables.

 Type of Service

 Some qdiscs have built in rules for classifying packets based on the TOS field.

 skb->priority

 Userspace programs can encode a class-id in the 'skb->priority' field using the

 SO_PRIORITY option.

 Each node within the tree can have its own filters but higher level filters may also point

 directly to lower classes.

 If classification did not succeed, packets are enqueued to the leaf qdisc attached to that

 class. Check qdisc specific manpages for details, however.

NAMING

 All qdiscs, classes and filters have IDs, which can either be specified or be automati?

 cally assigned.

 IDs consist of a major number and a minor number, separated by a colon - major:minor.

 Both major and minor are hexadecimal numbers and are limited to 16 bits. There are two

 special values: root is signified by major and minor of all ones, and unspecified is all

 zeros.

 QDISCS A qdisc, which potentially can have children, gets assigned a major number, called

 a 'handle', leaving the minor number namespace available for classes. The handle is

 expressed as '10:'. It is customary to explicitly assign a handle to qdiscs ex?

 pected to have children.

 CLASSES

 Classes residing under a qdisc share their qdisc major number, but each have a sep?

 arate minor number called a 'classid' that has no relation to their parent classes,

 only to their parent qdisc. The same naming custom as for qdiscs applies.

 FILTERS

 Filters have a three part ID, which is only needed when using a hashed filter hier?

 archy.

PARAMETERS

 The following parameters are widely used in TC. For other parameters, see the man pages

 for individual qdiscs.

 RATES Bandwidths or rates. These parameters accept a floating point number, possibly Page 8/13

 followed by either a unit (both SI and IEC units supported), or a float followed by

 a '%' character to specify the rate as a percentage of the device's speed (e.g. 5%,

 99.5%). Warning: specifying the rate as a percentage means a fraction of the cur?

 rent speed; if the speed changes, the value will not be recalculated.

 bit or a bare number

 Bits per second

 kbit Kilobits per second

 mbit Megabits per second

 gbit Gigabits per second

 tbit Terabits per second

 bps Bytes per second

 kbps Kilobytes per second

 mbps Megabytes per second

 gbps Gigabytes per second

 tbps Terabytes per second

 To specify in IEC units, replace the SI prefix (k-, m-, g-, t-) with IEC prefix

 (ki-, mi-, gi- and ti-) respectively.

 TC store rates as a 32-bit unsigned integer in bps internally, so we can specify a

 max rate of 4294967295 bps.

 TIMES Length of time. Can be specified as a floating point number followed by an optional

 unit:

 s, sec or secs

 Whole seconds

 ms, msec or msecs

 Milliseconds

 us, usec, usecs or a bare number

 Microseconds.

 TC defined its own time unit (equal to microsecond) and stores time values as

 32-bit unsigned integer, thus we can specify a max time value of 4294967295 usecs.

 SIZES Amounts of data. Can be specified as a floating point number followed by an op?

 tional unit:

 b or a bare number

 Bytes. Page 9/13

 kbit Kilobits

 kb or k

 Kilobytes

 mbit Megabits

 mb or m

 Megabytes

 gbit Gigabits

 gb or g

 Gigabytes

 TC stores sizes internally as 32-bit unsigned integer in byte, so we can specify a

 max size of 4294967295 bytes.

 VALUES Other values without a unit. These parameters are interpreted as decimal by de?

 fault, but you can indicate TC to interpret them as octal and hexadecimal by adding

 a '0' or '0x' prefix respectively.

TC COMMANDS

 The following commands are available for qdiscs, classes and filter:

 add Add a qdisc, class or filter to a node. For all entities, a parent must be passed,

 either by passing its ID or by attaching directly to the root of a device. When

 creating a qdisc or a filter, it can be named with the handle parameter. A class is

 named with the classid parameter.

 delete A qdisc can be deleted by specifying its handle, which may also be 'root'. All sub?

 classes and their leaf qdiscs are automatically deleted, as well as any filters at?

 tached to them.

 change Some entities can be modified 'in place'. Shares the syntax of 'add', with the ex?

 ception that the handle cannot be changed and neither can the parent. In other

 words, change cannot move a node.

 replace

 Performs a nearly atomic remove/add on an existing node id. If the node does not

 exist yet it is created.

 get Displays a single filter given the interface DEV, qdisc-id, priority, protocol and

 filter-id.

 show Displays all filters attached to the given interface. A valid parent ID must be

 passed. Page 10/13

 link Only available for qdiscs and performs a replace where the node must exist already.

MONITOR

 The tc utility can monitor events generated by the kernel such as adding/deleting qdiscs,

 filters or actions, or modifying existing ones.

 The following command is available for monitor :

 file If the file option is given, the tc does not listen to kernel events, but opens the

 given file and dumps its contents. The file has to be in binary format and contain

 netlink messages.

OPTIONS

 -b, -b filename, -batch, -batch filename

 read commands from provided file or standard input and invoke them. First failure

 will cause termination of tc.

 -force don't terminate tc on errors in batch mode. If there were any errors during execu?

 tion of the commands, the application return code will be non zero.

 -o, -oneline

 output each record on a single line, replacing line feeds with the '\' character.

 This is convenient when you want to count records with wc(1) or to grep(1) the out?

 put.

 -n, -net, -netns <NETNS>

 switches tc to the specified network namespace NETNS. Actually it just simplifies

 executing of:

 ip netns exec NETNS tc [OPTIONS] OBJECT { COMMAND | help }

 to

 tc -n[etns] NETNS [OPTIONS] OBJECT { COMMAND | help }

 -N, -Numeric

 Print the number of protocol, scope, dsfield, etc directly instead of converting it

 to human readable name.

 -cf, -conf <FILENAME>

 specifies path to the config file. This option is used in conjunction with other

 options (e.g. -nm).

 -t, -timestamp

 When tc monitor runs, print timestamp before the event message in format:

 Timestamp: <Day> <Month> <DD> <hh:mm:ss> <YYYY> <usecs> usec Page 11/13

 -ts, -tshort

 When tc monitor runs, prints short timestamp before the event message in format:

 [<YYYY>-<MM>-<DD>T<hh:mm:ss>.<ms>]

FORMAT

 The show command has additional formatting options:

 -s, -stats, -statistics

 output more statistics about packet usage.

 -d, -details

 output more detailed information about rates and cell sizes.

 -r, -raw

 output raw hex values for handles.

 -p, -pretty

 for u32 filter, decode offset and mask values to equivalent filter commands based

 on TCP/IP. In JSON output, add whitespace to improve readability.

 -iec print rates in IEC units (ie. 1K = 1024).

 -g, -graph

 shows classes as ASCII graph. Prints generic stats info under each class if -s op?

 tion was specified. Classes can be filtered only by dev option.

 -c[color][={always|auto|never}

 Configure color output. If parameter is omitted or always, color output is enabled

 regardless of stdout state. If parameter is auto, stdout is checked to be a termi?

 nal before enabling color output. If parameter is never, color output is disabled.

 If specified multiple times, the last one takes precedence. This flag is ignored if

 -json is also given.

 -j, -json

 Display results in JSON format.

 -nm, -name

 resolve class name from /etc/iproute2/tc_cls file or from file specified by -cf op?

 tion. This file is just a mapping of classid to class name:

 # Here is comment

 1:40 voip # Here is another comment

 1:50 web

 1:60 ftp Page 12/13

 1:2 home

 tc will not fail if -nm was specified without -cf option but /etc/iproute2/tc_cls

 file does not exist, which makes it possible to pass -nm option for creating tc

 alias.

 -br, -brief

 Print only essential data needed to identify the filter and action (handle, cookie,

 etc.) and stats. This option is currently only supported by tc filter show and tc

 actions ls commands.

EXAMPLES

 tc -g class show dev eth0

 Shows classes as ASCII graph on eth0 interface.

 tc -g -s class show dev eth0

 Shows classes as ASCII graph with stats info under each class.

HISTORY

 tc was written by Alexey N. Kuznetsov and added in Linux 2.2.

SEE ALSO

 tc-basic(8), tc-bfifo(8), tc-bpf(8), tc-cake(8), tc-cbq(8), tc-cgroup(8), tc-choke(8), tc-

 codel(8), tc-drr(8), tc-ematch(8), tc-ets(8), tc-flow(8), tc-flower(8), tc-fq(8), tc-

 fq_codel(8), tc-fq_pie(8), tc-fw(8), tc-hfsc(7), tc-hfsc(8), tc-htb(8), tc-mqprio(8), tc-

 pfifo(8), tc-pfifo_fast(8), tc-pie(8), tc-red(8), tc-route(8), tc-sfb(8), tc-sfq(8), tc-

 stab(8), tc-tbf(8), tc-tcindex(8), tc-u32(8),

 User documentation at http://lartc.org/, but please direct bugreports and patches to:

 <netdev@vger.kernel.org>

AUTHOR

 Manpage maintained by bert hubert (ahu@ds9a.nl)

iproute2 16 December 2001 TC(8)

Page 13/13

