
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-tbf.8'

$ man tc-tbf.8

TC(8) Linux TC(8)

NAME

 tbf - Token Bucket Filter

SYNOPSIS

 tc qdisc ... tbf rate rate burst bytes/cell (latency ms | limit bytes) [mpu bytes [

 peakrate rate mtu bytes/cell]]

 burst is also known as buffer and maxburst. mtu is also known as minburst.

DESCRIPTION

 The Token Bucket Filter is a classful queueing discipline available for traffic control

 with the tc(8) command.

 TBF is a pure shaper and never schedules traffic. It is non-work-conserving and may throt?

 tle itself, although packets are available, to ensure that the configured rate is not ex?

 ceeded. It is able to shape up to 1mbit/s of normal traffic with ideal minimal bursti?

 ness, sending out data exactly at the configured rates.

 Much higher rates are possible but at the cost of losing the minimal burstiness. In that

 case, data is on average dequeued at the configured rate but may be sent much faster at

 millisecond timescales. Because of further queues living in network adaptors, this is of?

 ten not a problem.

ALGORITHM

 As the name implies, traffic is filtered based on the expenditure of tokens. Tokens

 roughly correspond to bytes, with the additional constraint that each packet consumes some

 tokens, no matter how small it is. This reflects the fact that even a zero-sized packet

 occupies the link for some time. Page 1/3

 On creation, the TBF is stocked with tokens which correspond to the amount of traffic that

 can be burst in one go. Tokens arrive at a steady rate, until the bucket is full.

 If no tokens are available, packets are queued, up to a configured limit. The TBF now cal?

 culates the token deficit, and throttles until the first packet in the queue can be sent.

 If it is not acceptable to burst out packets at maximum speed, a peakrate can be config?

 ured to limit the speed at which the bucket empties. This peakrate is implemented as a

 second TBF with a very small bucket, so that it doesn't burst.

 To achieve perfection, the second bucket may contain only a single packet, which leads to

 the earlier mentioned 1mbit/s limit.

 This limit is caused by the fact that the kernel can only throttle for at minimum 1

 'jiffy', which depends on HZ as 1/HZ. For perfect shaping, only a single packet can get

 sent per jiffy - for HZ=100, this means 100 packets of on average 1000 bytes each, which

 roughly corresponds to 1mbit/s.

PARAMETERS

 See tc(8) for how to specify the units of these values.

 limit or latency

 Limit is the number of bytes that can be queued waiting for tokens to become avail?

 able. You can also specify this the other way around by setting the latency parame?

 ter, which specifies the maximum amount of time a packet can sit in the TBF. The

 latter calculation takes into account the size of the bucket, the rate and possibly

 the peakrate (if set). These two parameters are mutually exclusive.

 burst Also known as buffer or maxburst. Size of the bucket, in bytes. This is the maxi?

 mum amount of bytes that tokens can be available for instantaneously. In general,

 larger shaping rates require a larger buffer. For 10mbit/s on Intel, you need at

 least 10kbyte buffer if you want to reach your configured rate!

 If your buffer is too small, packets may be dropped because more tokens arrive per

 timer tick than fit in your bucket. The minimum buffer size can be calculated by

 dividing the rate by HZ.

 Token usage calculations are performed using a table which by default has a resolu?

 tion of 8 packets. This resolution can be changed by specifying the cell size with

 the burst. For example, to specify a 6000 byte buffer with a 16 byte cell size, set

 a burst of 6000/16. You will probably never have to set this. Must be an integral

 power of 2. Page 2/3

 mpu A zero-sized packet does not use zero bandwidth. For ethernet, no packet uses less

 than 64 bytes. The Minimum Packet Unit determines the minimal token usage (speci?

 fied in bytes) for a packet. Defaults to zero.

 rate The speed knob. See remarks above about limits! See tc(8) for units.

 Furthermore, if a peakrate is desired, the following parameters are available:

 peakrate

 Maximum depletion rate of the bucket. The peakrate does not need to be set, it is

 only necessary if perfect millisecond timescale shaping is required.

 mtu/minburst

 Specifies the size of the peakrate bucket. For perfect accuracy, should be set to

 the MTU of the interface. If a peakrate is needed, but some burstiness is accept?

 able, this size can be raised. A 3000 byte minburst allows around 3mbit/s of

 peakrate, given 1000 byte packets.

 Like the regular burstsize you can also specify a cell size.

EXAMPLE & USAGE

 To attach a TBF with a sustained maximum rate of 0.5mbit/s, a peakrate of 1.0mbit/s, a

 5kilobyte buffer, with a pre-bucket queue size limit calculated so the TBF causes at most

 70ms of latency, with perfect peakrate behaviour, issue:

 # tc qdisc add dev eth0 handle 10: root tbf rate 0.5mbit \

 burst 5kb latency 70ms peakrate 1mbit \

 minburst 1540

 To attach an inner qdisc, for example sfq, issue:

 # tc qdisc add dev eth0 parent 10:1 handle 100: sfq

 Without inner qdisc TBF queue acts as bfifo. If the inner qdisc is changed the limit/la?

 tency is not effective anymore.

SEE ALSO

 tc(8)

AUTHOR

 Alexey N. Kuznetsov, <kuznet@ms2.inr.ac.ru>. This manpage maintained by bert hubert

 <ahu@ds9a.nl>

iproute2 13 December 2001 TC(8)

Page 3/3

