
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-stab.8'

$ man tc-stab.8

STAB(8) Linux STAB(8)

NAME

 tc-stab - Generic size table manipulations

SYNOPSIS

 tc qdisc add ... stab

 [mtu BYTES] [tsize SLOTS]

 [mpu BYTES] [overhead BYTES]

 [linklayer { adsl | atm | ethernet }] ...

OPTIONS

 For the description of BYTES - please refer to the UNITS section of tc(8).

 mtu

 maximum packet size we create size table for, assumed 2048 if not specified explicitly

 tsize

 required table size, assumed 512 if not specified explicitly

 mpu

 minimum packet size used in computations

 overhead

 per-packet size overhead (can be negative) used in computations

 linklayer

 required linklayer specification.

DESCRIPTION

 Size tables allow manipulation of packet sizes, as seen by the whole scheduler framework

 (of course, the actual packet size remains the same). Adjusted packet size is calculated Page 1/4

 only once - when a qdisc enqueues the packet. Initial root enqueue initializes it to the

 real packet's size.

 Each qdisc can use a different size table, but the adjusted size is stored in an area

 shared by whole qdisc hierarchy attached to the interface. The effect is that if you have

 such a setup, the last qdisc with a stab in a chain "wins". For example, consider HFSC

 with simple pfifo attached to one of its leaf classes. If that pfifo qdisc has stab de?

 fined, it will override lengths calculated during HFSC's enqueue; and in turn, whenever

 HFSC tries to dequeue a packet, it will use a potentially invalid size in its calcula?

 tions. Normal setups will usually include stab defined only on root qdisc, but further

 overriding gives extra flexibility for less usual setups.

 The initial size table is calculated by tc tool using mtu and tsize parameters. The algo?

 rithm sets each slot's size to the smallest power of 2 value, so the whole mtu is covered

 by the size table. Neither tsize, nor mtu have to be power of 2 value, so the size table

 will usually support more than is required by mtu.

 For example, with mtu = 1500 and tsize = 128, a table with 128 slots will be created,

 where slot 0 will correspond to sizes 0-16, slot 1 to 17 - 32, ..., slot 127 to

 2033 - 2048. Sizes assigned to each slot depend on linklayer parameter.

 Stab calculation is also safe for an unusual case, when a size assigned to a slot would be

 larger than 2^16-1 (you will lose the accuracy though).

 During the kernel part of packet size adjustment, overhead will be added to original size,

 and then slot will be calculated. If the size would cause overflow, more than 1 slot will

 be used to get the final size. This of course will affect accuracy, but it's only a guard

 against unusual situations.

 Currently there are two methods of creating values stored in the size table - ethernet and

 atm (adsl):

 ethernet

 This is basically 1-1 mapping, so following our example from above (disregarding mpu

 for a moment) slot 0 would have 8, slot 1 would have 16 and so on, up to slot 127 with

 2048. Note, that mpu > 0 must be specified, and slots that would get less than speci?

 fied by mpu will get mpu instead. If you don't specify mpu, the size table will not be

 created at all (it wouldn't make any difference), although any overhead value will be

 respected during calculations.

 atm, adsl Page 2/4

 ATM linklayer consists of 53 byte cells, where each of them provides 48 bytes for pay?

 load. Also all the cells must be fully utilized, thus the last one is padded if/as

 necessary.

 When the size table is calculated, adjusted size that fits properly into lowest amount

 of cells is assigned to a slot. For example, a 100 byte long packet requires three

 48-byte payloads, so the final size would require 3 ATM cells - 159 bytes.

 For ATM size tables, 16 bytes sized slots are perfectly enough. The default values of

 mtu and tsize create 4 bytes sized slots.

TYPICAL OVERHEADS

 The following values are typical for different adsl scenarios (based on [1] and [2]):

 LLC based:

 PPPoA - 14 (PPP - 2, ATM - 12)

 PPPoE - 40+ (PPPoE - 8, ATM - 18, ethernet 14, possibly FCS - 4+padding)

 Bridged - 32 (ATM - 18, ethernet 14, possibly FCS - 4+padding)

 IPoA - 16 (ATM - 16)

 VC Mux based:

 PPPoA - 10 (PPP - 2, ATM - 8)

 PPPoE - 32+ (PPPoE - 8, ATM - 10, ethernet 14, possibly FCS - 4+padding)

 Bridged - 24+ (ATM - 10, ethernet 14, possibly FCS - 4+padding)

 IPoA - 8 (ATM - 8)

 There are a few important things regarding the above overheads:

 ? IPoA in LLC case requires SNAP, instead of LLC-NLPID (see rfc2684) - this is the rea?

 son why it actually takes more space than PPPoA.

 ? In rare cases, FCS might be preserved on protocols that include Ethernet frames

 (Bridged and PPPoE). In such situation, any Ethernet specific padding guaranteeing 64

 bytes long frame size has to be included as well (see RFC2684). In the other words,

 it also guarantees that any packet you send will take minimum 2 atm cells. You should

 set mpu accordingly for that.

 ? When the size table is consulted, and you're shaping traffic for the sake of another

 modem/router, an Ethernet header (without padding) will already be added to initial

 packet's length. You should compensate for that by subtracting 14 from the above over?

 heads in this case. If you're shaping directly on the router (for example, with speed?

 touch usb modem) using ppp daemon, you're using raw ip interface without underlying Page 3/4

 layer2, so nothing will be added.

 For more thorough explanations, please see [1] and [2].

ETHERNET CARDS CONSIDERATIONS

 It's often forgotten that modern network cards (even cheap ones on desktop motherboards)

 and/or their drivers often support different offloading mechanisms. In the context of

 traffic shaping, 'tso' and 'gso' might cause undesirable effects, due to massive TCP seg?

 ments being considered during traffic shaping (including stab calculations). For slow up?

 link interfaces, it's good to use ethtool to turn off offloading features.

SEE ALSO

 tc(8), tc-hfsc(7), tc-hfsc(8),

 [1] http://ace-host.stuart.id.au/russell/files/tc/tc-atm/

 [2] http://www.faqs.org/rfcs/rfc2684.html

 Please direct bugreports and patches to: <netdev@vger.kernel.org>

AUTHOR

 Manpage created by Michal Soltys (soltys@ziu.info)

iproute2 31 October 2011 STAB(8)

Page 4/4

