
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-sfq.8'

$ man tc-sfq.8

TC(8) Linux TC(8)

NAME

 sfq - Stochastic Fairness Queueing

SYNOPSIS

 tc qdisc ... [divisor hashtablesize] [limit packets] [perturb seconds] [quantum

 bytes] [flows number] [depth number] [headdrop] [redflowlimit bytes] [min bytes

] [max bytes] [avpkt bytes] [burst packets] [probability P] [ecn] [harddrop]

DESCRIPTION

 Stochastic Fairness Queueing is a classless queueing discipline available for traffic con?

 trol with the tc(8) command.

 SFQ does not shape traffic but only schedules the transmission of packets, based on

 'flows'. The goal is to ensure fairness so that each flow is able to send data in turn,

 thus preventing any single flow from drowning out the rest.

 This may in fact have some effect in mitigating a Denial of Service attempt.

 SFQ is work-conserving and therefore always delivers a packet if it has one available.

ALGORITHM

 On enqueueing, each packet is assigned to a hash bucket, based on the packets hash value.

 This hash value is either obtained from an external flow classifier (use tc filter to set

 them), or a default internal classifier if no external classifier has been configured.

 When the internal classifier is used, sfq uses

 (i) Source address

 (ii) Destination address

 (iii) Source and Destination port Page 1/4

 If these are available. SFQ knows about ipv4 and ipv6 and also UDP, TCP and ESP. Packets

 with other protocols are hashed based on the 32bits representation of their destination

 and source. A flow corresponds mostly to a TCP/IP connection.

 Each of these buckets should represent a unique flow. Because multiple flows may get

 hashed to the same bucket, sfqs internal hashing algorithm may be perturbed at config?

 urable intervals so that the unfairness lasts only for a short while. Perturbation may

 however cause some inadvertent packet reordering to occur. After linux-3.3, there is no

 packet reordering problem, but possible packet drops if rehashing hits one limit (number

 of flows or packets per flow)

 When dequeuing, each hashbucket with data is queried in a round robin fashion.

 Before linux-3.3, the compile time maximum length of the SFQ is 128 packets, which can be

 spread over at most 128 buckets of 1024 available. In case of overflow, tail-drop is per?

 formed on the fullest bucket, thus maintaining fairness.

 After linux-3.3, maximum length of SFQ is 65535 packets, and divisor limit is 65536. In

 case of overflow, tail-drop is performed on the fullest bucket, unless headdrop was re?

 quested.

PARAMETERS

 divisor

 Can be used to set a different hash table size, available from kernel 2.6.39 on?

 wards. The specified divisor must be a power of two and cannot be larger than

 65536. Default value: 1024.

 limit Upper limit of the SFQ. Can be used to reduce the default length of 127 packets.

 After linux-3.3, it can be raised.

 depth Limit of packets per flow (after linux-3.3). Default to 127 and can be lowered.

 perturb

 Interval in seconds for queue algorithm perturbation. Defaults to 0, which means

 that no perturbation occurs. Do not set too low for each perturbation may cause

 some packet reordering or losses. Advised value: 60 This value has no effect when

 external flow classification is used. Its better to increase divisor value to

 lower risk of hash collisions.

 quantum

 Amount of bytes a flow is allowed to dequeue during a round of the round robin

 process. Defaults to the MTU of the interface which is also the advised value and Page 2/4

 the minimum value.

 flows After linux-3.3, it is possible to change the default limit of flows. Default

 value is 127

 headdrop

 Default SFQ behavior is to perform tail-drop of packets from a flow. You can ask a

 headdrop instead, as this is known to provide a better feedback for TCP flows.

 redflowlimit

 Configure the optional RED module on top of each SFQ flow. Random Early Detection

 principle is to perform packet marks or drops in a probabilistic way. (man tc-red

 for details about RED)

 redflowlimit configures the hard limit on the real (not average) queue size per SFQ flow in bytes.

 min Average queue size at which marking becomes a possibility. Defaults to max /3

 max At this average queue size, the marking probability is maximal. Defaults to red?

 flowlimit /4

 probability

 Maximum probability for marking, specified as a floating point number from 0.0

 to 1.0. Default value is 0.02

 avpkt Specified in bytes. Used with burst to determine the time constant for average

 queue size calculations. Default value is 1000

 burst Used for determining how fast the average queue size is influenced by the real

 queue size.

 Default value is :

 (2 * min + max) / (3 * avpkt)

 ecn RED can either 'mark' or 'drop'. Explicit Congestion Notification allows RED to no?

 tify remote hosts that their rate exceeds the amount of bandwidth available. Non-

 ECN capable hosts can only be notified by dropping a packet. If this parameter is

 specified, packets which indicate that their hosts honor ECN will only be marked

 and not dropped, unless the queue size hits depth packets.

 harddrop

 If average flow queue size is above max bytes, this parameter forces a drop instead

 of ecn marking.

EXAMPLE & USAGE

 To attach to device ppp0: Page 3/4

 # tc qdisc add dev ppp0 root sfq

 Please note that SFQ, like all non-shaping (work-conserving) qdiscs, is only useful if it

 owns the queue. This is the case when the link speed equals the actually available band?

 width. This holds for regular phone modems, ISDN connections and direct non-switched eth?

 ernet links.

 Most often, cable modems and DSL devices do not fall into this category. The same holds

 for when connected to a switch and trying to send data to a congested segment also con?

 nected to the switch.

 In this case, the effective queue does not reside within Linux and is therefore not avail?

 able for scheduling.

 Embed SFQ in a classful qdisc to make sure it owns the queue.

 It is possible to use external classifiers with sfq, for example to hash traffic based

 only on source/destination ip addresses:

 # tc filter add ... flow hash keys src,dst perturb 30 divisor 1024

 Note that the given divisor should match the one used by sfq. If you have changed the sfq

 default of 1024, use the same value for the flow hash filter, too.

 Example of sfq with optional RED mode :

 # tc qdisc add dev eth0 parent 1:1 handle 10: sfq limit 3000 flows 512 divisor 16384

 redflowlimit 100000 min 8000 max 60000 probability 0.20 ecn headdrop

SOURCE

 o Paul E. McKenney "Stochastic Fairness Queuing", IEEE INFOCOMM'90 Proceedings, San

 Francisco, 1990.

 o Paul E. McKenney "Stochastic Fairness Queuing", "Interworking: Research and Experi?

 ence", v.2, 1991, p.113-131.

 o See also: M. Shreedhar and George Varghese "Efficient Fair Queuing using Deficit

 Round Robin", Proc. SIGCOMM 95.

SEE ALSO

 tc(8), tc-red(8)

AUTHORS

 Alexey N. Kuznetsov, <kuznet@ms2.inr.ac.ru>, Eric Dumazet <eric.dumazet@gmail.com>.

 This manpage maintained by bert hubert <ahu@ds9a.nl>

iproute2 24 January 2012 TC(8)

Page 4/4

