
Rocky Enterprise Linux 9.2 Manual Pages on command 'tc-flower.8'

$ man tc-flower.8

Flower filter in tc(8) Linux Flower filter in tc(8)

NAME

 flower - flow based traffic control filter

SYNOPSIS

 tc filter ... flower [MATCH_LIST] [action ACTION_SPEC] [classid CLASSID] [hw_tc

 TCID]

 MATCH_LIST := [MATCH_LIST] MATCH

 MATCH := { indev ifname | verbose | skip_sw | skip_hw | { dst_mac | src_mac }

 MASKED_LLADDR | vlan_id VID | vlan_prio PRIORITY | vlan_ethtype { ipv4 | ipv6 |

 ETH_TYPE } | cvlan_id VID | cvlan_prio PRIORITY | cvlan_ethtype { ipv4 | ipv6 |

 ETH_TYPE } | mpls LSE_LIST | mpls_label LABEL | mpls_tc TC | mpls_bos BOS |

 mpls_ttl TTL | ip_proto { tcp | udp | sctp | icmp | icmpv6 | IP_PROTO } | ip_tos

 MASKED_IP_TOS | ip_ttl MASKED_IP_TTL | { dst_ip | src_ip } PREFIX | { dst_port |

 src_port } { MASKED_NUMBER | min_port_number-max_port_number } | tcp_flags

 MASKED_TCP_FLAGS | type MASKED_TYPE | code MASKED_CODE | { arp_tip | arp_sip }

 IPV4_PREFIX | arp_op { request | reply | OP } | { arp_tha | arp_sha }

 MASKED_LLADDR | enc_key_id KEY-ID | { enc_dst_ip | enc_src_ip } { ipv4_address |

 ipv6_address } | enc_dst_port port_number | enc_tos TOS | enc_ttl TTL | { gen?

 eve_opts | vxlan_opts | erspan_opts } OPTIONS | ip_flags IP_FLAGS }

 LSE_LIST := [LSE_LIST] LSE

 LSE := lse depth DEPTH { label LABEL | tc TC | bos BOS | ttl TTL }

DESCRIPTION

 The flower filter matches flows to the set of keys specified and assigns an arbitrarily Page 1/8

 chosen class ID to packets belonging to them. Additionally (or alternatively) an action

 from the generic action framework may be called.

OPTIONS

 action ACTION_SPEC

 Apply an action from the generic actions framework on matching packets.

 classid CLASSID

 Specify a class to pass matching packets on to. CLASSID is in the form X:Y, while

 X and Y are interpreted as numbers in hexadecimal format.

 hw_tc TCID

 Specify a hardware traffic class to pass matching packets on to. TCID is in the

 range 0 through 15.

 indev ifname

 Match on incoming interface name. Obviously this makes sense only for forwarded

 flows. ifname is the name of an interface which must exist at the time of tc invo?

 cation.

 verbose

 Enable verbose logging, including offloading errors when not using skip_sw flag.

 skip_sw

 Do not process filter by software. If hardware has no offload support for this fil?

 ter, or TC offload is not enabled for the interface, operation will fail.

 skip_hw

 Do not process filter by hardware.

 dst_mac MASKED_LLADDR

 src_mac MASKED_LLADDR

 Match on source or destination MAC address. A mask may be optionally provided to

 limit the bits of the address which are matched. A mask is provided by following

 the address with a slash and then the mask. It may be provided in LLADDR format, in

 which case it is a bitwise mask, or as a number of high bits to match. If the mask

 is missing then a match on all bits is assumed.

 vlan_id VID

 Match on vlan tag id. VID is an unsigned 12bit value in decimal format.

 vlan_prio PRIORITY

 Match on vlan tag priority. PRIORITY is an unsigned 3bit value in decimal format. Page 2/8

 vlan_ethtype VLAN_ETH_TYPE

 Match on layer three protocol. VLAN_ETH_TYPE may be either ipv4, ipv6 or an un?

 signed 16bit value in hexadecimal format. To match on QinQ packet, it must be

 802.1Q or 802.1AD.

 cvlan_id VID

 Match on QinQ inner vlan tag id. VID is an unsigned 12bit value in decimal format.

 cvlan_prio PRIORITY

 Match on QinQ inner vlan tag priority. PRIORITY is an unsigned 3bit value in deci?

 mal format.

 cvlan_ethtype VLAN_ETH_TYPE

 Match on QinQ layer three protocol. VLAN_ETH_TYPE may be either ipv4, ipv6 or an

 unsigned 16bit value in hexadecimal format.

 mpls LSE_LIST

 Match on the MPLS label stack. LSE_LIST is a list of Label Stack Entries, each in?

 troduced by the lse keyword. This option can't be used together with the stand?

 alone mpls_label, mpls_tc, mpls_bos and mpls_ttl options.

 lse LSE_OPTIONS

 Match on an MPLS Label Stack Entry. LSE_OPTIONS is a list of options that

 describe the properties of the LSE to match.

 depth DEPTH

 The depth of the Label Stack Entry to consider. Depth starts at 1

 (the outermost Label Stack Entry). The maximum usable depth may be

 limited by the kernel. This option is mandatory. DEPTH is an un?

 signed 8 bit value in decimal format.

 label LABEL

 Match on the MPLS Label field at the specified depth. LABEL is an

 unsigned 20 bit value in decimal format.

 tc TC Match on the MPLS Traffic Class field at the specified depth. TC is

 an unsigned 3 bit value in decimal format.

 bos BOS

 Match on the MPLS Bottom Of Stack field at the specified depth. BOS

 is a 1 bit value in decimal format.

 ttl TTL Page 3/8

 Match on the MPLS Time To Live field at the specified depth. TTL is

 an unsigned 8 bit value in decimal format.

 mpls_label LABEL

 Match the label id in the outermost MPLS label stack entry. LABEL is an unsigned

 20 bit value in decimal format.

 mpls_tc TC

 Match on the MPLS TC field, which is typically used for packet priority, in the

 outermost MPLS label stack entry. TC is an unsigned 3 bit value in decimal format.

 mpls_bos BOS

 Match on the MPLS Bottom Of Stack field in the outermost MPLS label stack entry.

 BOS is a 1 bit value in decimal format.

 mpls_ttl TTL

 Match on the MPLS Time To Live field in the outermost MPLS label stack entry. TTL

 is an unsigned 8 bit value in decimal format.

 ip_proto IP_PROTO

 Match on layer four protocol. IP_PROTO may be tcp, udp, sctp, icmp, icmpv6 or an

 unsigned 8bit value in hexadecimal format.

 ip_tos MASKED_IP_TOS

 Match on ipv4 TOS or ipv6 traffic-class - eight bits in hexadecimal format. A mask

 may be optionally provided to limit the bits which are matched. A mask is provided

 by following the value with a slash and then the mask. If the mask is missing then

 a match on all bits is assumed.

 ip_ttl MASKED_IP_TTL

 Match on ipv4 TTL or ipv6 hop-limit - eight bits value in decimal or hexadecimal

 format. A mask may be optionally provided to limit the bits which are matched.

 Same logic is used for the mask as with matching on ip_tos.

 dst_ip PREFIX

 src_ip PREFIX

 Match on source or destination IP address. PREFIX must be a valid IPv4 or IPv6 ad?

 dress, depending on the protocol option to tc filter, optionally followed by a

 slash and the prefix length. If the prefix is missing, tc assumes a full-length

 host match.

 dst_port { MASKED_NUMBER | MIN_VALUE-MAX_VALUE } Page 4/8

 src_port { MASKED_NUMBER | MIN_VALUE-MAX_VALUE }

 Match on layer 4 protocol source or destination port number, with an optional mask.

 Alternatively, the minimum and maximum values can be specified to match on a range

 of layer 4 protocol source or destination port numbers. Only available for ip_proto

 values udp, tcp and sctp which have to be specified in beforehand.

 tcp_flags MASKED_TCP_FLAGS

 Match on TCP flags represented as 12bit bitfield in in hexadecimal format. A mask

 may be optionally provided to limit the bits which are matched. A mask is provided

 by following the value with a slash and then the mask. If the mask is missing then

 a match on all bits is assumed.

 type MASKED_TYPE

 code MASKED_CODE

 Match on ICMP type or code. A mask may be optionally provided to limit the bits of

 the address which are matched. A mask is provided by following the address with a

 slash and then the mask. The mask must be as a number which represents a bitwise

 mask If the mask is missing then a match on all bits is assumed. Only available

 for ip_proto values icmp and icmpv6 which have to be specified in beforehand.

 arp_tip IPV4_PREFIX

 arp_sip IPV4_PREFIX

 Match on ARP or RARP sender or target IP address. IPV4_PREFIX must be a valid IPv4

 address optionally followed by a slash and the prefix length. If the prefix is

 missing, tc assumes a full-length host match.

 arp_op ARP_OP

 Match on ARP or RARP operation. ARP_OP may be request, reply or an integer value

 0, 1 or 2. A mask may be optionally provided to limit the bits of the operation

 which are matched. A mask is provided by following the address with a slash and

 then the mask. It may be provided as an unsigned 8 bit value representing a bitwise

 mask. If the mask is missing then a match on all bits is assumed.

 arp_sha MASKED_LLADDR

 arp_tha MASKED_LLADDR

 Match on ARP or RARP sender or target MAC address. A mask may be optionally pro?

 vided to limit the bits of the address which are matched. A mask is provided by

 following the address with a slash and then the mask. It may be provided in LLADDR Page 5/8

 format, in which case it is a bitwise mask, or as a number of high bits to match.

 If the mask is missing then a match on all bits is assumed.

 enc_key_id NUMBER

 enc_dst_ip PREFIX

 enc_src_ip PREFIX

 enc_dst_port NUMBER

 enc_tos NUMBER

 enc_ttl NUMBER

 ct_state CT_STATE

 ct_zone CT_MASKED_ZONE

 ct_mark CT_MASKED_MARK

 ct_label CT_MASKED_LABEL

 Matches on connection tracking info

 CT_STATE

 Match the connection state, and can be combination of [{+|-}flag] flags,

 where flag can be one of

 trk - Tracked connection.

 new - New connection.

 est - Established connection.

 rpl - The packet is in the reply direction, meaning that it is in the oppo?

 site direction from the packet that initiated the connection.

 inv - The state is invalid. The packet couldn't be associated to a connec?

 tion.

 rel - The packet is related to an existing connection.

 Example: +trk+est

 CT_MASKED_ZONE

 Match the connection zone, and can be masked.

 CT_MASKED_MARK

 32bit match on the connection mark, and can be masked.

 CT_MASKED_LABEL

 128bit match on the connection label, and can be masked.

 geneve_opts OPTIONS

 vxlan_opts OPTIONS Page 6/8

 erspan_opts OPTIONS

 Match on IP tunnel metadata. Key id NUMBER is a 32 bit tunnel key id (e.g. VNI for

 VXLAN tunnel). PREFIX must be a valid IPv4 or IPv6 address optionally followed by

 a slash and the prefix length. If the prefix is missing, tc assumes a full-length

 host match. Dst port NUMBER is a 16 bit UDP dst port. Tos NUMBER is an 8 bit tos

 (dscp+ecn) value, ttl NUMBER is an 8 bit time-to-live value. geneve_opts OPTIONS

 must be a valid list of comma-separated geneve options where each option consists

 of a key optionally followed by a slash and corresponding mask. If the masks is

 missing, tc assumes a full-length match. The options can be described in the form

 CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a

 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable

 length hexadecimal value. vxlan_opts OPTIONS doesn't support multiple options, and

 it consists of a key followed by a slash and corresponding mask. If the mask is

 missing, tc assumes a full-length match. The option can be described in the form

 GBP/GBP_MASK, where GBP is represented as a 32bit number. erspan_opts OPTIONS

 doesn't support multiple options, and it consists of a key followed by a slash and

 corresponding mask. If the mask is missing, tc assumes a full-length match. The op?

 tion can be described in the form VERSION:INDEX:DIR:HWID/VERSION:IN?

 DEX_MASK:DIR_MASK:HWID_MASK, where VERSION is represented as a 8bit number, INDEX

 as an 32bit number, DIR and HWID as a 8bit number. Multiple options is not sup?

 ported. Note INDEX/INDEX_MASK is used when VERSION is 1, and DIR/DIR_MASK and

 HWID/HWID_MASK are used when VERSION is 2.

 ip_flags IP_FLAGS

 IP_FLAGS may be either frag, nofrag, firstfrag or nofirstfrag where frag and nofrag

 could be used to match on fragmented packets or not, respectively. firstfrag and

 nofirstfrag can be used to further distinguish fragmented packet. firstfrag can be

 used to indicate the first fragmented packet. nofirstfrag can be used to indicates

 subsequent fragmented packets or non-fragmented packets.

NOTES

 As stated above where applicable, matches of a certain layer implicitly depend on the

 matches of the next lower layer. Precisely, layer one and two matches (indev, dst_mac and

 src_mac) have no dependency, MPLS and layer three matches (mpls, mpls_label, mpls_tc,

 mpls_bos, mpls_ttl, ip_proto, dst_ip, src_ip, arp_tip, arp_sip, arp_op, arp_tha, arp_sha Page 7/8

 and ip_flags) depend on the protocol option of tc filter, layer four port matches

 (dst_port and src_port) depend on ip_proto being set to tcp, udp or sctp, and finally ICMP

 matches (code and type) depend on ip_proto being set to icmp or icmpv6.

 There can be only used one mask per one prio. If user needs to specify different mask, he

 has to use different prio.

SEE ALSO

 tc(8), tc-flow(8)

iproute2 22 Oct 2015 Flower filter in tc(8)

Page 8/8

