
Rocky Enterprise Linux 9.2 Manual Pages on command 'tap.1'

$ man tap.1

RUN.JS(1) User Commands RUN.JS(1)

NAME

 run.js - Test-Anything-Protocol module for Node.js

DESCRIPTION

 Usage:

 tap [options] <files>

 Executes all the files and interprets their output as TAP formatted test result data.

 To parse TAP data from stdin, specify "-" as a filename.

 Short options are parsed gnu-style, so for example '-bCRspec' would be equivalent to

 '--bail --no-color --reporter=spec'

 If the --check-coverage or --coverage-report options are provided, but no test files are

 specified, then a coverage report or coverage check will be run on the data from the last

 test run.

 Coverage is never enabled for stdin.

OPTIONS

 -j<n> --jobs=<n>

 Run up to <n> test files in parallel Note that this causes tests to be run in

 "buffered" mode, so line-by-line results cannot be reported, and older TAP parsers

 may get upset.

 -J --jobs-auto

 Run test files in parallel (auto calculated) Note that this causes tests to be run

 in "buffered" mode, so line-by-line results cannot be reported, and older TAP

 parsers may get upset. Page 1/6

 -g<pattern>

 Only run subtests tests matching the specified

 --grep=<pattern>

 pattern.

 Patterns are matched against top-level

 subtests in each file. To filter tests at subsequent levels, specify this option

 multiple times.

 To specify regular expression flags,

 format pattern like a JavaScript RegExp literal. For example: '/xyz/i' for

 case-insensitive matching.

 -i --invert

 Invert the matches to --grep patterns. (Like grep -v)

 -c --color

 Use colors (Default for TTY)

 -C --no-color

 Do not use colors (Default for non-TTY)

 -b --bail

 Bail out on first failure

 -B --no-bail

 Do not bail out on first failure (Default)

 -O --only

 Only run tests with {only: true} option

 -R<type> --reporter=<type>

 Use the specified reporter. Defaults to 'classic' when colors are in use, or 'tap'

 when colors are disabled.

 Available reporters:

 classic doc dot dump json jsonstream landing list markdown min nyan progress silent

 spec tap xunit

 -o<file>

 Send the raw TAP output to the specified

 --output-file=<file>

 file. Reporter output will still be printed to stdout, but the file will contain

 the raw TAP for later reply or analysis. Page 2/6

 -s<file> --save=<file>

 If <file> exists, then it should be a linedelimited list of test files to run. If

 <file> is not present, then all command-line positional arguments are run.

 After the set of test files are run, any

 failed test files are written back to the save file.

 This way, repeated runs with -s<file> will

 re-run failures until all the failures are passing, and then once again run all

 tests.

 It's a good idea to .gitignore the file

 used for this purpose, as it will churn a lot.

 --coverage --cov

 Capture coverage information using 'nyc'

 If a COVERALLS_REPO_TOKEN environment

 variable is set, then coverage is captured by default and sent to the coveralls.io

 service.

 --no-coverage --no-cov

 Do not capture coverage information. Note that if nyc is already loaded, then the

 coverage info will still be captured.

 --coverage-report=<type>

 Output coverage information using the specified istanbul/nyc reporter type.

 Default is 'text' when running on the

 command line, or 'text-lcov' when piping to coveralls.

 If 'html' is used, then the report will

 be opened in a web browser after running.

 This can be run on its own at any time

 after a test run that included coverage.

 --no-coverage-report

 Do not output a coverage report.

 --no-browser

 Do not open a web browser after generating an html coverage report.

 -t<n> --timeout=<n>

 Time out test files after <n> seconds. Defaults to 30, or the value of the

 TAP_TIMEOUT environment variable. Setting to 0 allows tests to run forever. Page 3/6

 -T --no-timeout

 Do not time out tests. Equivalent to --timeout=0

 -h --help

 print this thing you're looking at

 -v --version

 show the version of this program

 --node-arg=<arg>

 Pass an argument to Node binary in all child processes. Run 'node --help' to see a

 list of all relevant arguments. This can be specified multiple times to pass mul?

 tiple args to Node.

 -gc --expose-gc

 Expose the gc() function to Node tests

 --debug

 Run JavaScript tests with node --debug

 --debug-brk

 Run JavaScript tests with node --debug-brk

 --harmony

 Enable all Harmony flags in JavaScript tests

 --strict

 Run JS tests in 'use strict' mode

 --test-arg=<arg>

 Pass an argument to test files spawned by the tap command line executable. This

 can be specified multiple times to pass multiple args to test scripts.

 --nyc-arg=<arg>

 Pass an argument to nyc when running child processes with coverage enabled. This

 can be specified multiple times to pass multiple args to nyc.

 --check-coverage

 Check whether coverage is within thresholds provided. Setting this explicitly will

 default --coverage to true.

 This can be run on its own any time

 after a test run that included coverage.

 --branches

 what % of branches must be covered? Setting this will default both --check-cover? Page 4/6

 age and --coverage to true. [default: 0]

 --functions

 what % of functions must be covered? Setting this explicitly will default both

 --check-coverage and --coverage to true. [default: 0]

 --lines

 what % of lines must be covered? Setting this explicitly will default both

 --check-coverage and --coverage to true. [default: 90]

 --statements

 what % of statements must be covered? Setting this explicitly will default both

 --check-coverage and --coverage to true. [default: 0]

 --100 Full coverage, 100%. Sets branches, statements, functions, and lines to 100.

 --nyc-help

 Print nyc usage banner. Useful for viewing options for --nyc-arg.

 --nyc-version

 Print version of nyc used by tap.

 --dump-config

 Dump the config options in JSON format.

 -- Stop parsing flags, and treat any additional command line arguments as filenames.

 Environment Variables:

 TAP_SNAPSHOT

 Set to '1' to generate snapshot files for `t.matchSnapshot()` assertions.

 TAP_RCFILE

 A yaml formatted file which can set any of the above options. Defaults to

 $HOME/.taprc

 TAP_TIMEOUT

 Default value for --timeout option.

 TAP_COLORS

 Set to '1' to force color output, or '0' to prevent color output.

 TAP_BAIL

 Bail out on the first test failure. Used internally when '--bailout' is set.

 TAP Set to '1' to force standard TAP output, and suppress any reporters. Used when

 running child tests so that their output is parseable by the test harness.

 TAP_DIAG Page 5/6

 Set to '1' to show diagnostics by default for passing tests. Set to '0' to NOT

 show diagnostics by default for failing tests. If not one of these two values,

 then diagnostics are printed by default for failing tests, and not for passing

 tests.

 TAP_BUFFER

 Set to '1' to run subtests in buffered mode by default.

 TAP_DEV_LONGSTACK

 Set to '1' to include node-tap internals in stack traces. By default, these are

 included only when the current working directory is the tap project itself. Note

 that node internals are always excluded.

 TAP_DEV_SHORTSTACK

 Set to '1' to exclude node-tap internals in stack traces, even if the current work?

 ing directory is the tap project itself.

 _TAP_COVERAGE_

 Reserved for internal use.

 TAP_DEBUG

 Set to '1' to turn on debug mode.

 NODE_DEBUG

 Include 'tap' to turn on debug mode.

 TAP_GREP

 A '\n'-delimited list of grep patterns to apply to root level test objects. (This

 is an implementation detail for how the '--grep' option works.)

 TAP_GREP_INVERT

 Set to '1' to invert the meaning of the patterns in TAP_GREP. (Implementation de?

 tail for how the '--invert' flag works.)

 Config Files:

 You can create a yaml file with any of the options above. By default, the file at

 ~/.taprc will be loaded, but the TAP_RCFILE environment variable can modify this.

 Run 'tap --dump-config' for a listing of what can be set in that file. Each of the keys

 corresponds to one of the options above.

run.js 12.0.1 November 2021 RUN.JS(1)

Page 6/6

