
Rocky Enterprise Linux 9.2 Manual Pages on command 'tailq.3'

$ man tailq.3

TAILQ(3) Linux Programmer's Manual TAILQ(3)

NAME

 TAILQ_CONCAT, TAILQ_EMPTY, TAILQ_ENTRY, TAILQ_FIRST, TAILQ_FOREACH, TAILQ_FOREACH_REVERSE,

 TAILQ_HEAD, TAILQ_HEAD_INITIALIZER, TAILQ_INIT, TAILQ_INSERT_AFTER, TAILQ_INSERT_BEFORE,

 TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL, TAILQ_LAST, TAILQ_NEXT, TAILQ_PREV, TAILQ_REMOVE -

 implementation of a doubly linked tail queue

SYNOPSIS

 #include <sys/queue.h>

 void TAILQ_CONCAT(TAILQ_HEAD *head1, TAILQ_HEAD *head2,

 TAILQ_ENTRY NAME);

 int TAILQ_EMPTY(TAILQ_HEAD *head);

 TAILQ_ENTRY(TYPE);

 struct TYPE *TAILQ_FIRST(TAILQ_HEAD *head);

 TAILQ_FOREACH(struct TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME);

 TAILQ_FOREACH_REVERSE(struct TYPE *var, TAILQ_HEAD *head, HEADNAME,

 TAILQ_ENTRY NAME);

 TAILQ_HEAD(HEADNAME, TYPE);

 TAILQ_HEAD TAILQ_HEAD_INITIALIZER(TAILQ_HEAD head);

 void TAILQ_INIT(TAILQ_HEAD *head);

 void TAILQ_INSERT_AFTER(TAILQ_HEAD *head, struct TYPE *listelm,

 struct TYPE *elm, TAILQ_ENTRY NAME);

 void TAILQ_INSERT_BEFORE(struct TYPE *listelm, struct TYPE *elm,

 TAILQ_ENTRY NAME); Page 1/5

 void TAILQ_INSERT_HEAD(TAILQ_HEAD *head, struct TYPE *elm,

 TAILQ_ENTRY NAME);

 void TAILQ_INSERT_TAIL(TAILQ_HEAD *head, struct TYPE *elm,

 TAILQ_ENTRY NAME);

 struct TYPE *TAILQ_LAST(TAILQ_HEAD *head, HEADNAME);

 struct TYPE *TAILQ_NEXT(struct TYPE *elm, TAILQ_ENTRY NAME);

 struct TYPE *TAILQ_PREV(struct TYPE *elm, HEADNAME, TAILQ_ENTRY NAME);

 void TAILQ_REMOVE(TAILQ_HEAD *head, struct TYPE *elm, TAILQ_ENTRY NAME);

DESCRIPTION

 These macros define and operate on doubly linked tail queues.

 In the macro definitions, TYPE is the name of a user defined structure, that must contain

 a field of type TAILQ_ENTRY, named NAME. The argument HEADNAME is the name of a user de?

 fined structure that must be declared using the macro TAILQ_HEAD().

 A tail queue is headed by a structure defined by the TAILQ_HEAD() macro. This structure

 contains a pair of pointers, one to the first element in the tail queue and the other to

 the last element in the tail queue. The elements are doubly linked so that an arbitrary

 element can be removed without traversing the tail queue. New elements can be added to

 the tail queue after an existing element, before an existing element, at the head of the

 tail queue, or at the end of the tail queue. A TAILQ_HEAD structure is declared as fol?

 lows:

 TAILQ_HEAD(HEADNAME, TYPE) head;

 where struct HEADNAME is the structure to be defined, and struct TYPE is the type of the

 elements to be linked into the tail queue. A pointer to the head of the tail queue can

 later be declared as:

 struct HEADNAME *headp;

 (The names head and headp are user selectable.)

 The macro TAILQ_HEAD_INITIALIZER() evaluates to an initializer for the tail queue head.

 The macro TAILQ_CONCAT() concatenates the tail queue headed by head2 onto the end of the

 one headed by head1 removing all entries from the former.

 The macro TAILQ_EMPTY() evaluates to true if there are no items on the tail queue.

 The macro TAILQ_ENTRY() declares a structure that connects the elements in the tail queue.

 The macro TAILQ_FIRST() returns the first item on the tail queue or NULL if the tail queue

 is empty. Page 2/5

 The macro TAILQ_FOREACH() traverses the tail queue referenced by head in the forward di?

 rection, assigning each element in turn to var. var is set to NULL if the loop completes

 normally, or if there were no elements.

 The macro TAILQ_FOREACH_REVERSE() traverses the tail queue referenced by head in the re?

 verse direction, assigning each element in turn to var.

 The macro TAILQ_INIT() initializes the tail queue referenced by head.

 The macro TAILQ_INSERT_HEAD() inserts the new element elm at the head of the tail queue.

 The macro TAILQ_INSERT_TAIL() inserts the new element elm at the end of the tail queue.

 The macro TAILQ_INSERT_AFTER() inserts the new element elm after the element listelm.

 The macro TAILQ_INSERT_BEFORE() inserts the new element elm before the element listelm.

 The macro TAILQ_LAST() returns the last item on the tail queue. If the tail queue is

 empty the return value is NULL.

 The macro TAILQ_NEXT() returns the next item on the tail queue, or NULL if this item is

 the last.

 The macro TAILQ_PREV() returns the previous item on the tail queue, or NULL if this item

 is the first.

 The macro TAILQ_REMOVE() removes the element elm from the tail queue.

RETURN VALUE

 TAILQ_EMPTY() returns nonzero if the queue is empty, and zero if the queue contains at

 least one entry.

 TAILQ_FIRST(), TAILQ_LAST(), TAILQ_NEXT(), and TAILQ_PREV() return a pointer to the first,

 last, next or previous TYPE structure, respectively.

 TAILQ_HEAD_INITIALIZER() returns an initializer that can be assigned to the queue head.

CONFORMING TO

 Not in POSIX.1, POSIX.1-2001 or POSIX.1-2008. Present on the BSDs. (TAILQ functions

 first appeared in 4.4BSD).

BUGS

 The macros TAILQ_FOREACH() and TAILQ_FOREACH_REVERSE() don't allow var to be removed or

 freed within the loop, as it would interfere with the traversal. The macros TAILQ_FORE?

 ACH_SAFE() and TAILQ_FOREACH_REVERSE_SAFE(), which are present on the BSDs but are not

 present in glibc, fix this limitation by allowing var to safely be removed from the list

 and freed from within the loop without interfering with the traversal.

EXAMPLES Page 3/5

 #include <stddef.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/queue.h>

 struct entry {

 int data;

 TAILQ_ENTRY(entry) entries; /* Tail queue. */

 };

 TAILQ_HEAD(tailhead, entry);

 int

 main(void)

 {

 struct entry *n1, *n2, *n3, *np;

 struct tailhead head; /* Tail queue head. */

 int i;

 TAILQ_INIT(&head); /* Initialize the queue. */

 n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

 TAILQ_INSERT_HEAD(&head, n1, entries);

 n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */

 TAILQ_INSERT_TAIL(&head, n1, entries);

 n2 = malloc(sizeof(struct entry)); /* Insert after. */

 TAILQ_INSERT_AFTER(&head, n1, n2, entries);

 n3 = malloc(sizeof(struct entry)); /* Insert before. */

 TAILQ_INSERT_BEFORE(n2, n3, entries);

 TAILQ_REMOVE(&head, n2, entries); /* Deletion. */

 free(n2);

 /* Forward traversal. */

 i = 0;

 TAILQ_FOREACH(np, &head, entries)

 np->data = i++;

 /* Reverse traversal. */

 TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)

 printf("%i\n", np->data); Page 4/5

 /* TailQ Deletion. */

 n1 = TAILQ_FIRST(&head);

 while (n1 != NULL) {

 n2 = TAILQ_NEXT(n1, entries);

 free(n1);

 n1 = n2;

 }

 TAILQ_INIT(&head);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 insque(3), queue(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2020-12-21 TAILQ(3)

Page 5/5

