
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd.unit.5'

$ man systemd.unit.5

SYSTEMD.UNIT(5) systemd.unit SYSTEMD.UNIT(5)

NAME

 systemd.unit - Unit configuration

SYNOPSIS

 service.service, socket.socket, device.device, mount.mount, automount.automount,

 swap.swap, target.target, path.path, timer.timer, slice.slice, scope.scope

 System Unit Search Path

 /etc/systemd/system.control/*

 /run/systemd/system.control/*

 /run/systemd/transient/*

 /run/systemd/generator.early/*

 /etc/systemd/system/*

 /etc/systemd/system.attached/*

 /run/systemd/system/*

 /run/systemd/system.attached/*

 /run/systemd/generator/*

 ...

 /lib/systemd/system/*

 /run/systemd/generator.late/*

 User Unit Search Path

 ~/.config/systemd/user.control/*

 $XDG_RUNTIME_DIR/systemd/user.control/*

 $XDG_RUNTIME_DIR/systemd/transient/* Page 1/44

 $XDG_RUNTIME_DIR/systemd/generator.early/*

 ~/.config/systemd/user/*

 $XDG_CONFIG_DIRS/systemd/user/*

 /etc/systemd/user/*

 $XDG_RUNTIME_DIR/systemd/user/*

 /run/systemd/user/*

 $XDG_RUNTIME_DIR/systemd/generator/*

 $XDG_DATA_HOME/systemd/user/*

 $XDG_DATA_DIRS/systemd/user/*

 ...

 /usr/lib/systemd/user/*

 $XDG_RUNTIME_DIR/systemd/generator.late/*

DESCRIPTION

 A unit file is a plain text ini-style file that encodes information about a service, a

 socket, a device, a mount point, an automount point, a swap file or partition, a start-up

 target, a watched file system path, a timer controlled and supervised by systemd(1), a

 resource management slice or a group of externally created processes. See

 systemd.syntax(7) for a general description of the syntax.

 This man page lists the common configuration options of all the unit types. These options

 need to be configured in the [Unit] or [Install] sections of the unit files.

 In addition to the generic [Unit] and [Install] sections described here, each unit may

 have a type-specific section, e.g. [Service] for a service unit. See the respective man

 pages for more information: systemd.service(5), systemd.socket(5), systemd.device(5),

 systemd.mount(5), systemd.automount(5), systemd.swap(5), systemd.target(5),

 systemd.path(5), systemd.timer(5), systemd.slice(5), systemd.scope(5).

 Unit files are loaded from a set of paths determined during compilation, described in the

 next section.

 Valid unit names consist of a "name prefix" and a dot and a suffix specifying the unit

 type. The "unit prefix" must consist of one or more valid characters (ASCII letters,

 digits, ":", "-", "_", ".", and "\"). The total length of the unit name including the

 suffix must not exceed 256 characters. The type suffix must be one of ".service",

 ".socket", ".device", ".mount", ".automount", ".swap", ".target", ".path", ".timer",

 ".slice", or ".scope". Page 2/44

 Units names can be parameterized by a single argument called the "instance name". The unit

 is then constructed based on a "template file" which serves as the definition of multiple

 services or other units. A template unit must have a single "@" at the end of the name

 (right before the type suffix). The name of the full unit is formed by inserting the

 instance name between "@" and the unit type suffix. In the unit file itself, the instance

 parameter may be referred to using "%i" and other specifiers, see below.

 Unit files may contain additional options on top of those listed here. If systemd

 encounters an unknown option, it will write a warning log message but continue loading the

 unit. If an option or section name is prefixed with X-, it is ignored completely by

 systemd. Options within an ignored section do not need the prefix. Applications may use

 this to include additional information in the unit files. To access those options,

 applications need to parse the unit files on their own.

 Units can be aliased (have an alternative name), by creating a symlink from the new name

 to the existing name in one of the unit search paths. For example,

 systemd-networkd.service has the alias dbus-org.freedesktop.network1.service, created

 during installation as a symlink, so when systemd is asked through D-Bus to load

 dbus-org.freedesktop.network1.service, it'll load systemd-networkd.service. As another

 example, default.target ? the default system target started at boot ? is commonly

 symlinked (aliased) to either multi-user.target or graphical.target to select what is

 started by default. Alias names may be used in commands like disable, start, stop, status,

 and similar, and in all unit dependency directives, including Wants=, Requires=, Before=,

 After=. Aliases cannot be used with the preset command.

 Aliases obey the following restrictions: a unit of a certain type (".service", ".socket",

 ...) can only be aliased by a name with the same type suffix. A plain unit (not a template

 or an instance), may only be aliased by a plain name. A template instance may only be

 aliased by another template instance, and the instance part must be identical. A template

 may be aliased by another template (in which case the alias applies to all instances of

 the template). As a special case, a template instance (e.g. "alias@inst.service") may be

 a symlink to different template (e.g. "template@inst.service"). In that case, just this

 specific instance is aliased, while other instances of the template (e.g.

 "alias@foo.service", "alias@bar.service") are not aliased. Those rule preserve the

 requirement that the instance (if any) is always uniquely defined for a given unit and all

 its aliases. Page 3/44

 Unit files may specify aliases through the Alias= directive in the [Install] section. When

 the unit is enabled, symlinks will be created for those names, and removed when the unit

 is disabled. For example, reboot.target specifies Alias=ctrl-alt-del.target, so when

 enabled, the symlink /etc/systemd/system/ctrl-alt-del.service pointing to the

 reboot.target file will be created, and when Ctrl+Alt+Del is invoked, systemd will look

 for the ctrl-alt-del.service and execute reboot.service. systemd does not look at the

 [Install] section at all during normal operation, so any directives in that section only

 have an effect through the symlinks created during enablement.

 Along with a unit file foo.service, the directory foo.service.wants/ may exist. All unit

 files symlinked from such a directory are implicitly added as dependencies of type Wants=

 to the unit. Similar functionality exists for Requires= type dependencies as well, the

 directory suffix is .requires/ in this case. This functionality is useful to hook units

 into the start-up of other units, without having to modify their unit files. For details

 about the semantics of Wants=, see below. The preferred way to create symlinks in the

 .wants/ or .requires/ directory of a unit file is by embedding the dependency in [Install]

 section of the target unit, and creating the symlink in the file system with the enable or

 preset commands of systemctl(1).

 Along with a unit file foo.service, a "drop-in" directory foo.service.d/ may exist. All

 files with the suffix ".conf" from this directory will be merged in the alphanumeric order

 and parsed after the main unit file itself has been parsed. This is useful to alter or add

 configuration settings for a unit, without having to modify unit files. Each drop-in file

 must contain appropriate section headers. For instantiated units, this logic will first

 look for the instance ".d/" subdirectory (e.g. "foo@bar.service.d/") and read its ".conf"

 files, followed by the template ".d/" subdirectory (e.g. "foo@.service.d/") and the

 ".conf" files there. Moreover for unit names containing dashes ("-"), the set of

 directories generated by repeatedly truncating the unit name after all dashes is searched

 too. Specifically, for a unit name foo-bar-baz.service not only the regular drop-in

 directory foo-bar-baz.service.d/ is searched but also both foo-bar-.service.d/ and

 foo-.service.d/. This is useful for defining common drop-ins for a set of related units,

 whose names begin with a common prefix. This scheme is particularly useful for mount,

 automount and slice units, whose systematic naming structure is built around dashes as

 component separators. Note that equally named drop-in files further down the prefix

 hierarchy override those further up, i.e. foo-bar-.service.d/10-override.conf overrides Page 4/44

 foo-.service.d/10-override.conf.

 In cases of unit aliases (described above), dropins for the aliased name and all aliases

 are loaded. In the example of default.target aliasing graphical.target, default.target.d/,

 default.target.wants/, default.target.requires/, graphical.target.d/,

 graphical.target.wants/, graphical.target.requires/ would all be read. For templates,

 dropins for the template, any template aliases, the template instance, and all alias

 instances are read. When just a specific template instance is aliased, then the dropins

 for the target template, the target template instance, and the alias template instance are

 read.

 In addition to /etc/systemd/system, the drop-in ".d/" directories for system services can

 be placed in /lib/systemd/system or /run/systemd/system directories. Drop-in files in

 /etc/ take precedence over those in /run/ which in turn take precedence over those in

 /lib/. Drop-in files under any of these directories take precedence over unit files

 wherever located. Multiple drop-in files with different names are applied in lexicographic

 order, regardless of which of the directories they reside in.

 Units also support a top-level drop-in with type.d/, where type may be e.g. "service" or

 "socket", that allows altering or adding to the settings of all corresponding unit files

 on the system. The formatting and precedence of applying drop-in configurations follow

 what is defined above. Files in type.d/ have lower precedence compared to files in

 name-specific override directories. The usual rules apply: multiple drop-in files with

 different names are applied in lexicographic order, regardless of which of the directories

 they reside in, so a file in type.d/ applies to a unit only if there are no drop-ins or

 masks with that name in directories with higher precedence. See Examples.

 Note that while systemd offers a flexible dependency system between units it is

 recommended to use this functionality only sparingly and instead rely on techniques such

 as bus-based or socket-based activation which make dependencies implicit, resulting in a

 both simpler and more flexible system.

 As mentioned above, a unit may be instantiated from a template file. This allows creation

 of multiple units from a single configuration file. If systemd looks for a unit

 configuration file, it will first search for the literal unit name in the file system. If

 that yields no success and the unit name contains an "@" character, systemd will look for

 a unit template that shares the same name but with the instance string (i.e. the part

 between the "@" character and the suffix) removed. Example: if a service Page 5/44

 getty@tty3.service is requested and no file by that name is found, systemd will look for

 getty@.service and instantiate a service from that configuration file if it is found.

 To refer to the instance string from within the configuration file you may use the special

 "%i" specifier in many of the configuration options. See below for details.

 If a unit file is empty (i.e. has the file size 0) or is symlinked to /dev/null, its

 configuration will not be loaded and it appears with a load state of "masked", and cannot

 be activated. Use this as an effective way to fully disable a unit, making it impossible

 to start it even manually.

 The unit file format is covered by the Interface Portability and Stability Promise[1].

STRING ESCAPING FOR INCLUSION IN UNIT NAMES

 Sometimes it is useful to convert arbitrary strings into unit names. To facilitate this, a

 method of string escaping is used, in order to map strings containing arbitrary byte

 values (except NUL) into valid unit names and their restricted character set. A common

 special case are unit names that reflect paths to objects in the file system hierarchy.

 Example: a device unit dev-sda.device refers to a device with the device node /dev/sda in

 the file system.

 The escaping algorithm operates as follows: given a string, any "/" character is replaced

 by "-", and all other characters which are not ASCII alphanumerics, ":", "_" or "." are

 replaced by C-style "\x2d" escapes. In addition, "." is replaced with such a C-style

 escape when it would appear as the first character in the escaped string.

 When the input qualifies as absolute file system path, this algorithm is extended

 slightly: the path to the root directory "/" is encoded as single dash "-". In addition,

 any leading, trailing or duplicate "/" characters are removed from the string before

 transformation. Example: /foo//bar/baz/ becomes "foo-bar-baz".

 This escaping is fully reversible, as long as it is known whether the escaped string was a

 path (the unescaping results are different for paths and non-path strings). The systemd-

 escape(1) command may be used to apply and reverse escaping on arbitrary strings. Use

 systemd-escape --path to escape path strings, and systemd-escape without --path otherwise.

AUTOMATIC DEPENDENCIES

 Implicit Dependencies

 A number of unit dependencies are implicitly established, depending on unit type and unit

 configuration. These implicit dependencies can make unit configuration file cleaner. For

 the implicit dependencies in each unit type, please refer to section "Implicit Page 6/44

 Dependencies" in respective man pages.

 For example, service units with Type=dbus automatically acquire dependencies of type

 Requires= and After= on dbus.socket. See systemd.service(5) for details.

 Default Dependencies

 Default dependencies are similar to implicit dependencies, but can be turned on and off by

 setting DefaultDependencies= to yes (the default) and no, while implicit dependencies are

 always in effect. See section "Default Dependencies" in respective man pages for the

 effect of enabling DefaultDependencies= in each unit types.

 For example, target units will complement all configured dependencies of type Wants= or

 Requires= with dependencies of type After= unless DefaultDependencies=no is set in the

 specified units. See systemd.target(5) for details. Note that this behavior can be turned

 off by setting DefaultDependencies=no.

UNIT FILE LOAD PATH

 Unit files are loaded from a set of paths determined during compilation, described in the

 two tables below. Unit files found in directories listed earlier override files with the

 same name in directories lower in the list.

 When the variable $SYSTEMD_UNIT_PATH is set, the contents of this variable overrides the

 unit load path. If $SYSTEMD_UNIT_PATH ends with an empty component (":"), the usual unit

 load path will be appended to the contents of the variable.

 Table 1. Load path when running in system mode (--system).

 ??

 ?Path ? Description ?

 ??

 ?/etc/systemd/system.control ? Persistent and transient ?

 ???????????????????????????????? configuration created using the ?

 ?/run/systemd/system.control ? dbus API ?

 ??

 ?/run/systemd/transient ? Dynamic configuration for ?

 ? ? transient units ?

 ??

 ?/run/systemd/generator.early ? Generated units with high ?

 ? ? priority (see early-dir in ?

 ? ? systemd.generator(7)) ? Page 7/44

 ??

 ?/etc/systemd/system ? System units created by the ?

 ? ? administrator ?

 ??

 ?/run/systemd/system ? Runtime units ?

 ??

 ?/run/systemd/generator ? Generated units with medium ?

 ? ? priority (see normal-dir in ?

 ? ? systemd.generator(7)) ?

 ??

 ?/usr/local/lib/systemd/system ? System units installed by the ?

 ? ? administrator ?

 ??

 ?/lib/systemd/system ? System units installed by the ?

 ? ? distribution package manager ?

 ??

 ?/run/systemd/generator.late ? Generated units with low ?

 ? ? priority (see late-dir in ?

 ? ? systemd.generator(7)) ?

 ??

 Table 2. Load path when running in user mode (--user).

 ???

 ?Path ? Description ?

 ???

 ?$XDG_CONFIG_HOME/systemd/user.control ? Persistent and transient ?

 ?or ? configuration created using the ?

 ?~/.config/systemd/user.control ? dbus API ($XDG_CONFIG_HOME is ?

 ?? used if set, ~/.config ?

 ?$XDG_RUNTIME_DIR/systemd/user.control ? otherwise) ?

 ???

 ?/run/systemd/transient ? Dynamic configuration for ?

 ? ? transient units ?

 ??? Page 8/44

 ?/run/systemd/generator.early ? Generated units with high ?

 ? ? priority (see early-dir in ?

 ? ? systemd.generator(7)) ?

 ???

 ?$XDG_CONFIG_HOME/systemd/user or ? User configuration ?

 ?$HOME/.config/systemd/user ? ($XDG_CONFIG_HOME is used if ?

 ? ? set, ~/.config otherwise) ?

 ???

 ?$XDG_CONFIG_DIRS/systemd/user or ? Additional configuration ?

 ?/etc/xdg/systemd/user ? directories as specified by the ?

 ? ? XDG base directory specification ?

 ? ? ($XDG_CONFIG_DIRS is used if ?

 ? ? set, /etc/xdg otherwise) ?

 ???

 ?/etc/systemd/user ? User units created by the ?

 ? ? administrator ?

 ???

 ?$XDG_RUNTIME_DIR/systemd/user ? Runtime units (only used when ?

 ? ? $XDG_RUNTIME_DIR is set) ?

 ???

 ?/run/systemd/user ? Runtime units ?

 ???

 ?$XDG_RUNTIME_DIR/systemd/generator ? Generated units with medium ?

 ? ? priority (see normal-dir in ?

 ? ? systemd.generator(7)) ?

 ???

 ?$XDG_DATA_HOME/systemd/user or ? Units of packages that have been ?

 ?$HOME/.local/share/systemd/user ? installed in the home directory ?

 ? ? ($XDG_DATA_HOME is used if set, ?

 ? ? ~/.local/share otherwise) ?

 ???

 ?$XDG_DATA_DIRS/systemd/user or ? Additional data directories as ?

 ?/usr/local/share/systemd/user and ? specified by the XDG base ? Page 9/44

 ?/usr/share/systemd/user ? directory specification ?

 ? ? ($XDG_DATA_DIRS is used if set, ?

 ? ? /usr/local/share and /usr/share ?

 ? ? otherwise) ?

 ???

 ?$dir/systemd/user for each $dir in ? Additional locations for ?

 ?$XDG_DATA_DIRS ? installed user units, one for ?

 ? ? each entry in $XDG_DATA_DIRS ?

 ???

 ?/usr/local/lib/systemd/user ? User units installed by the ?

 ? ? administrator ?

 ???

 ?/usr/lib/systemd/user ? User units installed by the ?

 ? ? distribution package manager ?

 ???

 ?$XDG_RUNTIME_DIR/systemd/generator.late ? Generated units with low ?

 ? ? priority (see late-dir in ?

 ? ? systemd.generator(7)) ?

 ???

 The set of load paths for the user manager instance may be augmented or changed using

 various environment variables. And environment variables may in turn be set using

 environment generators, see systemd.environment-generator(7). In particular,

 $XDG_DATA_HOME and $XDG_DATA_DIRS may be easily set using systemd-environment-d-

 generator(8). Thus, directories listed here are just the defaults. To see the actual list

 that would be used based on compilation options and current environment use

 systemd-analyze --user unit-paths

 Moreover, additional units might be loaded into systemd from directories not on the unit

 load path by creating a symlink pointing to a unit file in the directories. You can use

 systemctl link for this operation. See systemctl(1) for its usage and precaution.

UNIT GARBAGE COLLECTION

 The system and service manager loads a unit's configuration automatically when a unit is

 referenced for the first time. It will automatically unload the unit configuration and

 state again when the unit is not needed anymore ("garbage collection"). A unit may be Page 10/44

 referenced through a number of different mechanisms:

 1. Another loaded unit references it with a dependency such as After=, Wants=, ...

 2. The unit is currently starting, running, reloading or stopping.

 3. The unit is currently in the failed state. (But see below.)

 4. A job for the unit is pending.

 5. The unit is pinned by an active IPC client program.

 6. The unit is a special "perpetual" unit that is always active and loaded. Examples for

 perpetual units are the root mount unit -.mount or the scope unit init.scope that the

 service manager itself lives in.

 7. The unit has running processes associated with it.

 The garbage collection logic may be altered with the CollectMode= option, which allows

 configuration whether automatic unloading of units that are in failed state is

 permissible, see below.

 Note that when a unit's configuration and state is unloaded, all execution results, such

 as exit codes, exit signals, resource consumption and other statistics are lost, except

 for what is stored in the log subsystem.

 Use systemctl daemon-reload or an equivalent command to reload unit configuration while

 the unit is already loaded. In this case all configuration settings are flushed out and

 replaced with the new configuration (which however might not be in effect immediately),

 however all runtime state is saved/restored.

[UNIT] SECTION OPTIONS

 The unit file may include a [Unit] section, which carries generic information about the

 unit that is not dependent on the type of unit:

 Description=

 A short human readable title of the unit. This may be used by systemd (and other UIs)

 as a user-visible label for the unit, so this string should identify the unit rather

 than describe it, despite the name. This string also shouldn't just repeat the unit

 name. "Apache2 Web Server" is a good example. Bad examples are "high-performance

 light-weight HTTP server" (too generic) or "Apache2" (meaningless for people who do

 not know Apache, duplicates the unit name). systemd may use this string as a noun in

 status messages ("Starting description...", "Started description.", "Reached target

 description.", "Failed to start description."), so it should be capitalized, and

 should not be a full sentence, or a phrase with a continuous verb. Bad examples Page 11/44

 include "exiting the container" or "updating the database once per day.".

 Documentation=

 A space-separated list of URIs referencing documentation for this unit or its

 configuration. Accepted are only URIs of the types "http://", "https://", "file:",

 "info:", "man:". For more information about the syntax of these URIs, see uri(7). The

 URIs should be listed in order of relevance, starting with the most relevant. It is a

 good idea to first reference documentation that explains what the unit's purpose is,

 followed by how it is configured, followed by any other related documentation. This

 option may be specified more than once, in which case the specified list of URIs is

 merged. If the empty string is assigned to this option, the list is reset and all

 prior assignments will have no effect.

 Wants=

 Configures (weak) requirement dependencies on other units. This option may be

 specified more than once or multiple space-separated units may be specified in one

 option in which case dependencies for all listed names will be created. Dependencies

 of this type may also be configured outside of the unit configuration file by adding a

 symlink to a .wants/ directory accompanying the unit file. For details, see above.

 Units listed in this option will be started if the configuring unit is. However, if

 the listed units fail to start or cannot be added to the transaction, this has no

 impact on the validity of the transaction as a whole, and this unit will still be

 started. This is the recommended way to hook the start-up of one unit to the start-up

 of another unit.

 Note that requirement dependencies do not influence the order in which services are

 started or stopped. This has to be configured independently with the After= or Before=

 options. If unit foo.service pulls in unit bar.service as configured with Wants= and

 no ordering is configured with After= or Before=, then both units will be started

 simultaneously and without any delay between them if foo.service is activated.

 Requires=

 Similar to Wants=, but declares a stronger requirement dependency. Dependencies of

 this type may also be configured by adding a symlink to a .requires/ directory

 accompanying the unit file.

 If this unit gets activated, the units listed will be activated as well. If one of the

 other units fails to activate, and an ordering dependency After= on the failing unit Page 12/44

 is set, this unit will not be started. Besides, with or without specifying After=,

 this unit will be stopped if one of the other units is explicitly stopped.

 Often, it is a better choice to use Wants= instead of Requires= in order to achieve a

 system that is more robust when dealing with failing services.

 Note that this dependency type does not imply that the other unit always has to be in

 active state when this unit is running. Specifically: failing condition checks (such

 as ConditionPathExists=, ConditionPathIsSymbolicLink=, ... ? see below) do not cause

 the start job of a unit with a Requires= dependency on it to fail. Also, some unit

 types may deactivate on their own (for example, a service process may decide to exit

 cleanly, or a device may be unplugged by the user), which is not propagated to units

 having a Requires= dependency. Use the BindsTo= dependency type together with After=

 to ensure that a unit may never be in active state without a specific other unit also

 in active state (see below).

 Requisite=

 Similar to Requires=. However, if the units listed here are not started already, they

 will not be started and the starting of this unit will fail immediately. Requisite=

 does not imply an ordering dependency, even if both units are started in the same

 transaction. Hence this setting should usually be combined with After=, to ensure this

 unit is not started before the other unit.

 When Requisite=b.service is used on a.service, this dependency will show as

 RequisiteOf=a.service in property listing of b.service. RequisiteOf= dependency

 cannot be specified directly.

 BindsTo=

 Configures requirement dependencies, very similar in style to Requires=. However, this

 dependency type is stronger: in addition to the effect of Requires= it declares that

 if the unit bound to is stopped, this unit will be stopped too. This means a unit

 bound to another unit that suddenly enters inactive state will be stopped too. Units

 can suddenly, unexpectedly enter inactive state for different reasons: the main

 process of a service unit might terminate on its own choice, the backing device of a

 device unit might be unplugged or the mount point of a mount unit might be unmounted

 without involvement of the system and service manager.

 When used in conjunction with After= on the same unit the behaviour of BindsTo= is

 even stronger. In this case, the unit bound to strictly has to be in active state for Page 13/44

 this unit to also be in active state. This not only means a unit bound to another unit

 that suddenly enters inactive state, but also one that is bound to another unit that

 gets skipped due to a failed condition check (such as ConditionPathExists=,

 ConditionPathIsSymbolicLink=, ... ? see below) will be stopped, should it be running.

 Hence, in many cases it is best to combine BindsTo= with After=.

 When BindsTo=b.service is used on a.service, this dependency will show as

 BoundBy=a.service in property listing of b.service. BoundBy= dependency cannot be

 specified directly.

 PartOf=

 Configures dependencies similar to Requires=, but limited to stopping and restarting

 of units. When systemd stops or restarts the units listed here, the action is

 propagated to this unit. Note that this is a one-way dependency ? changes to this unit

 do not affect the listed units.

 When PartOf=b.service is used on a.service, this dependency will show as

 ConsistsOf=a.service in property listing of b.service. ConsistsOf= dependency cannot

 be specified directly.

 Upholds=

 Configures dependencies similar to Wants=, but as long a this unit is up, all units

 listed in Upholds= are started whenever found to be inactive or failed, and no job is

 queued for them. While a Wants= dependency on another unit has a one-time effect when

 this units started, a Upholds= dependency on it has a continuous effect, constantly

 restarting the unit if necessary. This is an alternative to the Restart= setting of

 service units, to ensure they are kept running whatever happens.

 When Upholds=b.service is used on a.service, this dependency will show as

 UpheldBy=a.service in the property listing of b.service. The UpheldBy= dependency

 cannot be specified directly.

 Conflicts=

 A space-separated list of unit names. Configures negative requirement dependencies. If

 a unit has a Conflicts= setting on another unit, starting the former will stop the

 latter and vice versa.

 Note that this setting does not imply an ordering dependency, similarly to the Wants=

 and Requires= dependencies described above. This means that to ensure that the

 conflicting unit is stopped before the other unit is started, an After= or Before= Page 14/44

 dependency must be declared. It doesn't matter which of the two ordering dependencies

 is used, because stop jobs are always ordered before start jobs, see the discussion in

 Before=/After= below.

 If unit A that conflicts with unit B is scheduled to be started at the same time as B,

 the transaction will either fail (in case both are required parts of the transaction)

 or be modified to be fixed (in case one or both jobs are not a required part of the

 transaction). In the latter case, the job that is not required will be removed, or in

 case both are not required, the unit that conflicts will be started and the unit that

 is conflicted is stopped.

 Before=, After=

 These two settings expect a space-separated list of unit names. They may be specified

 more than once, in which case dependencies for all listed names are created.

 Those two settings configure ordering dependencies between units. If unit foo.service

 contains the setting Before=bar.service and both units are being started,

 bar.service's start-up is delayed until foo.service has finished starting up. After=

 is the inverse of Before=, i.e. while Before= ensures that the configured unit is

 started before the listed unit begins starting up, After= ensures the opposite, that

 the listed unit is fully started up before the configured unit is started.

 When two units with an ordering dependency between them are shut down, the inverse of

 the start-up order is applied. I.e. if a unit is configured with After= on another

 unit, the former is stopped before the latter if both are shut down. Given two units

 with any ordering dependency between them, if one unit is shut down and the other is

 started up, the shutdown is ordered before the start-up. It doesn't matter if the

 ordering dependency is After= or Before=, in this case. It also doesn't matter which

 of the two is shut down, as long as one is shut down and the other is started up; the

 shutdown is ordered before the start-up in all cases. If two units have no ordering

 dependencies between them, they are shut down or started up simultaneously, and no

 ordering takes place. It depends on the unit type when precisely a unit has finished

 starting up. Most importantly, for service units start-up is considered completed for

 the purpose of Before=/After= when all its configured start-up commands have been

 invoked and they either failed or reported start-up success. Note that this does

 includes ExecStartPost= (or ExecStopPost= for the shutdown case).

 Note that those settings are independent of and orthogonal to the requirement Page 15/44

 dependencies as configured by Requires=, Wants=, Requisite=, or BindsTo=. It is a

 common pattern to include a unit name in both the After= and Wants= options, in which

 case the unit listed will be started before the unit that is configured with these

 options.

 Note that Before= dependencies on device units have no effect and are not supported.

 Devices generally become available as a result of an external hotplug event, and

 systemd creates the corresponding device unit without delay.

 OnFailure=

 A space-separated list of one or more units that are activated when this unit enters

 the "failed" state. A service unit using Restart= enters the failed state only after

 the start limits are reached.

 OnSuccess=

 A space-separated list of one or more units that are activated when this unit enters

 the "inactive" state.

 PropagatesReloadTo=, ReloadPropagatedFrom=

 A space-separated list of one or more units to which reload requests from this unit

 shall be propagated to, or units from which reload requests shall be propagated to

 this unit, respectively. Issuing a reload request on a unit will automatically also

 enqueue reload requests on all units that are linked to it using these two settings.

 PropagatesStopTo=, StopPropagatedFrom=

 A space-separated list of one or more units to which stop requests from this unit

 shall be propagated to, or units from which stop requests shall be propagated to this

 unit, respectively. Issuing a stop request on a unit will automatically also enqueue

 stop requests on all units that are linked to it using these two settings.

 JoinsNamespaceOf=

 For units that start processes (such as service units), lists one or more other units

 whose network and/or temporary file namespace to join. This only applies to unit types

 which support the PrivateNetwork=, NetworkNamespacePath=, PrivateIPC=,

 IPCNamespacePath=, and PrivateTmp= directives (see systemd.exec(5) for details). If a

 unit that has this setting set is started, its processes will see the same /tmp/,

 /var/tmp/, IPC namespace and network namespace as one listed unit that is started. If

 multiple listed units are already started, it is not defined which namespace is

 joined. Note that this setting only has an effect if Page 16/44

 PrivateNetwork=/NetworkNamespacePath=, PrivateIPC=/IPCNamespacePath= and/or

 PrivateTmp= is enabled for both the unit that joins the namespace and the unit whose

 namespace is joined.

 RequiresMountsFor=

 Takes a space-separated list of absolute paths. Automatically adds dependencies of

 type Requires= and After= for all mount units required to access the specified path.

 Mount points marked with noauto are not mounted automatically through local-fs.target,

 but are still honored for the purposes of this option, i.e. they will be pulled in by

 this unit.

 OnFailureJobMode=

 Takes a value of "fail", "replace", "replace-irreversibly", "isolate", "flush",

 "ignore-dependencies" or "ignore-requirements". Defaults to "replace". Specifies how

 the units listed in OnFailure= will be enqueued. See systemctl(1)'s --job-mode= option

 for details on the possible values. If this is set to "isolate", only a single unit

 may be listed in OnFailure=.

 IgnoreOnIsolate=

 Takes a boolean argument. If true, this unit will not be stopped when isolating

 another unit. Defaults to false for service, target, socket, timer, and path units,

 and true for slice, scope, device, swap, mount, and automount units.

 StopWhenUnneeded=

 Takes a boolean argument. If true, this unit will be stopped when it is no longer

 used. Note that, in order to minimize the work to be executed, systemd will not stop

 units by default unless they are conflicting with other units, or the user explicitly

 requested their shut down. If this option is set, a unit will be automatically cleaned

 up if no other active unit requires it. Defaults to false.

 RefuseManualStart=, RefuseManualStop=

 Takes a boolean argument. If true, this unit can only be activated or deactivated

 indirectly. In this case, explicit start-up or termination requested by the user is

 denied, however if it is started or stopped as a dependency of another unit, start-up

 or termination will succeed. This is mostly a safety feature to ensure that the user

 does not accidentally activate units that are not intended to be activated explicitly,

 and not accidentally deactivate units that are not intended to be deactivated. These

 options default to false. Page 17/44

 AllowIsolate=

 Takes a boolean argument. If true, this unit may be used with the systemctl isolate

 command. Otherwise, this will be refused. It probably is a good idea to leave this

 disabled except for target units that shall be used similar to runlevels in SysV init

 systems, just as a precaution to avoid unusable system states. This option defaults to

 false.

 DefaultDependencies=

 Takes a boolean argument. If yes, (the default), a few default dependencies will

 implicitly be created for the unit. The actual dependencies created depend on the unit

 type. For example, for service units, these dependencies ensure that the service is

 started only after basic system initialization is completed and is properly terminated

 on system shutdown. See the respective man pages for details. Generally, only services

 involved with early boot or late shutdown should set this option to no. It is highly

 recommended to leave this option enabled for the majority of common units. If set to

 no, this option does not disable all implicit dependencies, just non-essential ones.

 CollectMode=

 Tweaks the "garbage collection" algorithm for this unit. Takes one of inactive or

 inactive-or-failed. If set to inactive the unit will be unloaded if it is in the

 inactive state and is not referenced by clients, jobs or other units ? however it is

 not unloaded if it is in the failed state. In failed mode, failed units are not

 unloaded until the user invoked systemctl reset-failed on them to reset the failed

 state, or an equivalent command. This behaviour is altered if this option is set to

 inactive-or-failed: in this case the unit is unloaded even if the unit is in a failed

 state, and thus an explicitly resetting of the failed state is not necessary. Note

 that if this mode is used unit results (such as exit codes, exit signals, consumed

 resources, ...) are flushed out immediately after the unit completed, except for what

 is stored in the logging subsystem. Defaults to inactive.

 FailureAction=, SuccessAction=

 Configure the action to take when the unit stops and enters a failed state or inactive

 state. Takes one of none, reboot, reboot-force, reboot-immediate, poweroff,

 poweroff-force, poweroff-immediate, exit, and exit-force. In system mode, all options

 are allowed. In user mode, only none, exit, and exit-force are allowed. Both options

 default to none. Page 18/44

 If none is set, no action will be triggered. reboot causes a reboot following the

 normal shutdown procedure (i.e. equivalent to systemctl reboot). reboot-force causes

 a forced reboot which will terminate all processes forcibly but should cause no dirty

 file systems on reboot (i.e. equivalent to systemctl reboot -f) and reboot-immediate

 causes immediate execution of the reboot(2) system call, which might result in data

 loss (i.e. equivalent to systemctl reboot -ff). Similarly, poweroff, poweroff-force,

 poweroff-immediate have the effect of powering down the system with similar semantics.

 exit causes the manager to exit following the normal shutdown procedure, and

 exit-force causes it terminate without shutting down services. When exit or exit-force

 is used by default the exit status of the main process of the unit (if this applies)

 is returned from the service manager. However, this may be overridden with

 FailureActionExitStatus=/SuccessActionExitStatus=, see below.

 FailureActionExitStatus=, SuccessActionExitStatus=

 Controls the exit status to propagate back to an invoking container manager (in case

 of a system service) or service manager (in case of a user manager) when the

 FailureAction=/SuccessAction= are set to exit or exit-force and the action is

 triggered. By default the exit status of the main process of the triggering unit (if

 this applies) is propagated. Takes a value in the range 0...255 or the empty string to

 request default behaviour.

 JobTimeoutSec=, JobRunningTimeoutSec=

 JobTimeoutSec= specifies a timeout for the whole job that starts running when the job

 is queued. JobRunningTimeoutSec= specifies a timeout that starts running when the

 queued job is actually started. If either limit is reached, the job will be cancelled,

 the unit however will not change state or even enter the "failed" mode.

 Both settings take a time span with the default unit of seconds, but other units may

 be specified, see systemd.time(5). The default is "infinity" (job timeouts disabled),

 except for device units where JobRunningTimeoutSec= defaults to

 DefaultTimeoutStartSec=.

 Note: these timeouts are independent from any unit-specific timeouts (for example, the

 timeout set with TimeoutStartSec= in service units). The job timeout has no effect on

 the unit itself. Or in other words: unit-specific timeouts are useful to abort unit

 state changes, and revert them. The job timeout set with this option however is useful

 to abort only the job waiting for the unit state to change. Page 19/44

 JobTimeoutAction=, JobTimeoutRebootArgument=

 JobTimeoutAction= optionally configures an additional action to take when the timeout

 is hit, see description of JobTimeoutSec= and JobRunningTimeoutSec= above. It takes

 the same values as StartLimitAction=. Defaults to none.

 JobTimeoutRebootArgument= configures an optional reboot string to pass to the

 reboot(2) system call.

 StartLimitIntervalSec=interval, StartLimitBurst=burst

 Configure unit start rate limiting. Units which are started more than burst times

 within an interval time span are not permitted to start any more. Use

 StartLimitIntervalSec= to configure the checking interval and StartLimitBurst= to

 configure how many starts per interval are allowed.

 interval is a time span with the default unit of seconds, but other units may be

 specified, see systemd.time(5). Defaults to DefaultStartLimitIntervalSec= in manager

 configuration file, and may be set to 0 to disable any kind of rate limiting. burst

 is a number and defaults to DefaultStartLimitBurst= in manager configuration file.

 These configuration options are particularly useful in conjunction with the service

 setting Restart= (see systemd.service(5)); however, they apply to all kinds of starts

 (including manual), not just those triggered by the Restart= logic.

 Note that units which are configured for Restart=, and which reach the start limit are

 not attempted to be restarted anymore; however, they may still be restarted manually

 or from a timer or socket at a later point, after the interval has passed. From that

 point on, the restart logic is activated again. systemctl reset-failed will cause the

 restart rate counter for a service to be flushed, which is useful if the administrator

 wants to manually start a unit and the start limit interferes with that. Rate-limiting

 is enforced after any unit condition checks are executed, and hence unit activations

 with failing conditions do not count towards the rate limit.

 When a unit is unloaded due to the garbage collection logic (see above) its rate limit

 counters are flushed out too. This means that configuring start rate limiting for a

 unit that is not referenced continuously has no effect.

 This setting does not apply to slice, target, device, and scope units, since they are

 unit types whose activation may either never fail, or may succeed only a single time.

 StartLimitAction=

 Configure an additional action to take if the rate limit configured with Page 20/44

 StartLimitIntervalSec= and StartLimitBurst= is hit. Takes the same values as the

 FailureAction=/SuccessAction= settings. If none is set, hitting the rate limit will

 trigger no action except that the start will not be permitted. Defaults to none.

 RebootArgument=

 Configure the optional argument for the reboot(2) system call if StartLimitAction= or

 FailureAction= is a reboot action. This works just like the optional argument to

 systemctl reboot command.

 SourcePath=

 A path to a configuration file this unit has been generated from. This is primarily

 useful for implementation of generator tools that convert configuration from an

 external configuration file format into native unit files. This functionality should

 not be used in normal units.

 Conditions and Asserts

 Unit files may also include a number of Condition...= and Assert...= settings. Before the

 unit is started, systemd will verify that the specified conditions and asserts are true.

 If not, the starting of the unit will be (mostly silently) skipped (in case of

 conditions), or aborted with an error message (in case of asserts). Failing conditions or

 asserts will not result in the unit being moved into the "failed" state. The conditions

 and asserts are checked at the time the queued start job is to be executed. The ordering

 dependencies are still respected, so other units are still pulled in and ordered as if

 this unit was successfully activated, and the conditions and asserts are executed the

 precise moment the unit would normally start and thus can validate system state after the

 units ordered before completed initialization. Use condition expressions for skipping

 units that do not apply to the local system, for example because the kernel or runtime

 environment doesn't require their functionality.

 If multiple conditions are specified, the unit will be executed if all of them apply (i.e.

 a logical AND is applied). Condition checks can use a pipe symbol ("|") after the equals

 sign ("Condition...=|..."), which causes the condition to become a triggering condition.

 If at least one triggering condition is defined for a unit, then the unit will be started

 if at least one of the triggering conditions of the unit applies and all of the regular

 (i.e. non-triggering) conditions apply. If you prefix an argument with the pipe symbol and

 an exclamation mark, the pipe symbol must be passed first, the exclamation second. If any

 of these options is assigned the empty string, the list of conditions is reset completely, Page 21/44

 all previous condition settings (of any kind) will have no effect.

 The AssertArchitecture=, AssertVirtualization=, ... options are similar to conditions but

 cause the start job to fail (instead of being skipped). The failed check is logged. Units

 with failed conditions are considered to be in a clean state and will be garbage collected

 if they are not referenced. This means that when queried, the condition failure may or may

 not show up in the state of the unit.

 Note that neither assertion nor condition expressions result in unit state changes. Also

 note that both are checked at the time the job is to be executed, i.e. long after

 depending jobs and it itself were queued. Thus, neither condition nor assertion

 expressions are suitable for conditionalizing unit dependencies.

 The condition verb of systemd-analyze(1) can be used to test condition and assert

 expressions.

 Except for ConditionPathIsSymbolicLink=, all path checks follow symlinks.

 ConditionArchitecture=

 Check whether the system is running on a specific architecture. Takes one of "x86",

 "x86-64", "ppc", "ppc-le", "ppc64", "ppc64-le", "ia64", "parisc", "parisc64", "s390",

 "s390x", "sparc", "sparc64", "mips", "mips-le", "mips64", "mips64-le", "alpha", "arm",

 "arm-be", "arm64", "arm64-be", "sh", "sh64", "m68k", "tilegx", "cris", "arc",

 "arc-be", or "native".

 The architecture is determined from the information returned by uname(2) and is thus

 subject to personality(2). Note that a Personality= setting in the same unit file has

 no effect on this condition. A special architecture name "native" is mapped to the

 architecture the system manager itself is compiled for. The test may be negated by

 prepending an exclamation mark.

 ConditionFirmware=

 Check whether the system's firmware is of a certain type. Possible values are: "uefi"

 (for systems with EFI), "device-tree" (for systems with a device tree) and

 "device-tree-compatible(xyz)" (for systems with a device tree that is compatible to

 "xyz").

 ConditionVirtualization=

 Check whether the system is executed in a virtualized environment and optionally test

 whether it is a specific implementation. Takes either boolean value to check if being

 executed in any virtualized environment, or one of "vm" and "container" to test Page 22/44

 against a generic type of virtualization solution, or one of "qemu", "kvm", "amazon",

 "zvm", "vmware", "microsoft", "oracle", "powervm", "xen", "bochs", "uml", "bhyve",

 "qnx", "openvz", "lxc", "lxc-libvirt", "systemd-nspawn", "docker", "podman", "rkt",

 "wsl", "proot", "pouch", "acrn" to test against a specific implementation, or

 "private-users" to check whether we are running in a user namespace. See systemd-

 detect-virt(1) for a full list of known virtualization technologies and their

 identifiers. If multiple virtualization technologies are nested, only the innermost is

 considered. The test may be negated by prepending an exclamation mark.

 ConditionHost=

 ConditionHost= may be used to match against the hostname or machine ID of the host.

 This either takes a hostname string (optionally with shell style globs) which is

 tested against the locally set hostname as returned by gethostname(2), or a machine ID

 formatted as string (see machine-id(5)). The test may be negated by prepending an

 exclamation mark.

 ConditionKernelCommandLine=

 ConditionKernelCommandLine= may be used to check whether a specific kernel command

 line option is set (or if prefixed with the exclamation mark ? unset). The argument

 must either be a single word, or an assignment (i.e. two words, separated by "="). In

 the former case the kernel command line is searched for the word appearing as is, or

 as left hand side of an assignment. In the latter case, the exact assignment is looked

 for with right and left hand side matching. This operates on the kernel command line

 communicated to userspace via /proc/cmdline, except when the service manager is

 invoked as payload of a container manager, in which case the command line of PID 1 is

 used instead (i.e. /proc/1/cmdline).

 ConditionKernelVersion=

 ConditionKernelVersion= may be used to check whether the kernel version (as reported

 by uname -r) matches a certain expression (or if prefixed with the exclamation mark

 does not match it). The argument must be a list of (potentially quoted) expressions.

 For each of the expressions, if it starts with one of "<", "<=", "=", "!=", ">=", ">"

 a relative version comparison is done, otherwise the specified string is matched with

 shell-style globs.

 Note that using the kernel version string is an unreliable way to determine which

 features are supported by a kernel, because of the widespread practice of backporting Page 23/44

 drivers, features, and fixes from newer upstream kernels into older versions provided

 by distributions. Hence, this check is inherently unportable and should not be used

 for units which may be used on different distributions.

 ConditionEnvironment=

 ConditionEnvironment= may be used to check whether a specific environment variable is

 set (or if prefixed with the exclamation mark ? unset) in the service manager's

 environment block. The argument may be a single word, to check if the variable with

 this name is defined in the environment block, or an assignment ("name=value"), to

 check if the variable with this exact value is defined. Note that the environment

 block of the service manager itself is checked, i.e. not any variables defined with

 Environment= or EnvironmentFile=, as described above. This is particularly useful when

 the service manager runs inside a containerized environment or as per-user service

 manager, in order to check for variables passed in by the enclosing container manager

 or PAM.

 ConditionSecurity=

 ConditionSecurity= may be used to check whether the given security technology is

 enabled on the system. Currently, the recognized values are "selinux", "apparmor",

 "tomoyo", "ima", "smack", "audit", "uefi-secureboot" and "tpm2". The test may be

 negated by prepending an exclamation mark.

 ConditionCapability=

 Check whether the given capability exists in the capability bounding set of the

 service manager (i.e. this does not check whether capability is actually available in

 the permitted or effective sets, see capabilities(7) for details). Pass a capability

 name such as "CAP_MKNOD", possibly prefixed with an exclamation mark to negate the

 check.

 ConditionACPower=

 Check whether the system has AC power, or is exclusively battery powered at the time

 of activation of the unit. This takes a boolean argument. If set to "true", the

 condition will hold only if at least one AC connector of the system is connected to a

 power source, or if no AC connectors are known. Conversely, if set to "false", the

 condition will hold only if there is at least one AC connector known and all AC

 connectors are disconnected from a power source.

 ConditionNeedsUpdate= Page 24/44

 Takes one of /var/ or /etc/ as argument, possibly prefixed with a "!" (to invert the

 condition). This condition may be used to conditionalize units on whether the

 specified directory requires an update because /usr/'s modification time is newer than

 the stamp file .updated in the specified directory. This is useful to implement

 offline updates of the vendor operating system resources in /usr/ that require

 updating of /etc/ or /var/ on the next following boot. Units making use of this

 condition should order themselves before systemd-update-done.service(8), to make sure

 they run before the stamp file's modification time gets reset indicating a completed

 update.

 If the systemd.condition-needs-update= option is specified on the kernel command line

 (taking a boolean), it will override the result of this condition check, taking

 precedence over any file modification time checks. If the kernel command line option

 is used, systemd-update-done.service will not have immediate effect on any following

 ConditionNeedsUpdate= checks, until the system is rebooted where the kernel command

 line option is not specified anymore.

 Note that to make this scheme effective, the timestamp of /usr/ should be explicitly

 updated after its contents are modified. The kernel will automatically update

 modification timestamp on a directory only when immediate children of a directory are

 modified; an modification of nested files will not automatically result in mtime of

 /usr/ being updated.

 Also note that if the update method includes a call to execute appropriate post-update

 steps itself, it should not touch the timestamp of /usr/. In a typical distribution

 packaging scheme, packages will do any required update steps as part of the

 installation or upgrade, to make package contents immediately usable.

 ConditionNeedsUpdate= should be used with other update mechanisms where such an

 immediate update does not happen.

 ConditionFirstBoot=

 Takes a boolean argument. This condition may be used to conditionalize units on

 whether the system is booting up for the first time. This roughly means that /etc/ is

 unpopulated (for details, see "First Boot Semantics" in machine-id(5)). This may be

 used to populate /etc/ on the first boot after factory reset, or when a new system

 instance boots up for the first time.

 For robustness, units with ConditionFirstBoot=yes should order themselves before Page 25/44

 first-boot-complete.target and pull in this passive target with Wants=. This ensures

 that in a case of an aborted first boot, these units will be re-run during the next

 system startup.

 If the systemd.condition-first-boot= option is specified on the kernel command line

 (taking a boolean), it will override the result of this condition check, taking

 precedence over /etc/machine-id existence checks.

 ConditionPathExists=

 Check for the existence of a file. If the specified absolute path name does not exist,

 the condition will fail. If the absolute path name passed to ConditionPathExists= is

 prefixed with an exclamation mark ("!"), the test is negated, and the unit is only

 started if the path does not exist.

 ConditionPathExistsGlob=

 ConditionPathExistsGlob= is similar to ConditionPathExists=, but checks for the

 existence of at least one file or directory matching the specified globbing pattern.

 ConditionPathIsDirectory=

 ConditionPathIsDirectory= is similar to ConditionPathExists= but verifies that a

 certain path exists and is a directory.

 ConditionPathIsSymbolicLink=

 ConditionPathIsSymbolicLink= is similar to ConditionPathExists= but verifies that a

 certain path exists and is a symbolic link.

 ConditionPathIsMountPoint=

 ConditionPathIsMountPoint= is similar to ConditionPathExists= but verifies that a

 certain path exists and is a mount point.

 ConditionPathIsReadWrite=

 ConditionPathIsReadWrite= is similar to ConditionPathExists= but verifies that the

 underlying file system is readable and writable (i.e. not mounted read-only).

 ConditionPathIsEncrypted=

 ConditionPathIsEncrypted= is similar to ConditionPathExists= but verifies that the

 underlying file system's backing block device is encrypted using dm-crypt/LUKS. Note

 that this check does not cover ext4 per-directory encryption, and only detects block

 level encryption. Moreover, if the specified path resides on a file system on top of a

 loopback block device, only encryption above the loopback device is detected. It is

 not detected whether the file system backing the loopback block device is encrypted. Page 26/44

 ConditionDirectoryNotEmpty=

 ConditionDirectoryNotEmpty= is similar to ConditionPathExists= but verifies that a

 certain path exists and is a non-empty directory.

 ConditionFileNotEmpty=

 ConditionFileNotEmpty= is similar to ConditionPathExists= but verifies that a certain

 path exists and refers to a regular file with a non-zero size.

 ConditionFileIsExecutable=

 ConditionFileIsExecutable= is similar to ConditionPathExists= but verifies that a

 certain path exists, is a regular file, and marked executable.

 ConditionUser=

 ConditionUser= takes a numeric "UID", a UNIX user name, or the special value

 "@system". This condition may be used to check whether the service manager is running

 as the given user. The special value "@system" can be used to check if the user id is

 within the system user range. This option is not useful for system services, as the

 system manager exclusively runs as the root user, and thus the test result is

 constant.

 ConditionGroup=

 ConditionGroup= is similar to ConditionUser= but verifies that the service manager's

 real or effective group, or any of its auxiliary groups, match the specified group or

 GID. This setting does not support the special value "@system".

 ConditionControlGroupController=

 Check whether given cgroup controllers (e.g. "cpu") are available for use on the

 system or whether the legacy v1 cgroup or the modern v2 cgroup hierarchy is used.

 Multiple controllers may be passed with a space separating them; in this case the

 condition will only pass if all listed controllers are available for use. Controllers

 unknown to systemd are ignored. Valid controllers are "cpu", "cpuacct", "io", "blkio",

 "memory", "devices", and "pids". Even if available in the kernel, a particular

 controller may not be available if it was disabled on the kernel command line with

 cgroup_disable=controller.

 Alternatively, two special strings "v1" and "v2" may be specified (without any

 controller names). "v2" will pass if the unified v2 cgroup hierarchy is used, and

 "v1" will pass if the legacy v1 hierarchy or the hybrid hierarchy are used (see the

 discussion of systemd.unified_cgroup_hierarchy and Page 27/44

 systemd.legacy_systemd_cgroup_controller in systemd.service(5) for more information).

 ConditionMemory=

 Verify that the specified amount of system memory is available to the current system.

 Takes a memory size in bytes as argument, optionally prefixed with a comparison

 operator "<", "<=", "=", "!=", ">=", ">". On bare-metal systems compares the amount of

 physical memory in the system with the specified size, adhering to the specified

 comparison operator. In containers compares the amount of memory assigned to the

 container instead.

 ConditionCPUs=

 Verify that the specified number of CPUs is available to the current system. Takes a

 number of CPUs as argument, optionally prefixed with a comparison operator "<", "<=",

 "=", "!=", ">=", ">". Compares the number of CPUs in the CPU affinity mask configured

 of the service manager itself with the specified number, adhering to the specified

 comparison operator. On physical systems the number of CPUs in the affinity mask of

 the service manager usually matches the number of physical CPUs, but in special and

 virtual environments might differ. In particular, in containers the affinity mask

 usually matches the number of CPUs assigned to the container and not the physically

 available ones.

 ConditionCPUFeature=

 Verify that a given CPU feature is available via the "CPUID" instruction. This

 condition only does something on i386 and x86-64 processors. On other processors it is

 assumed that the CPU does not support the given feature. It checks the leaves "1",

 "7", "0x80000001", and "0x80000007". Valid values are: "fpu", "vme", "de", "pse",

 "tsc", "msr", "pae", "mce", "cx8", "apic", "sep", "mtrr", "pge", "mca", "cmov", "pat",

 "pse36", "clflush", "mmx", "fxsr", "sse", "sse2", "ht", "pni", "pclmul", "monitor",

 "ssse3", "fma3", "cx16", "sse4_1", "sse4_2", "movbe", "popcnt", "aes", "xsave",

 "osxsave", "avx", "f16c", "rdrand", "bmi1", "avx2", "bmi2", "rdseed", "adx", "sha_ni",

 "syscall", "rdtscp", "lm", "lahf_lm", "abm", "constant_tsc".

 ConditionOSRelease=

 Verify that a specific "key=value" pair is set in the host's os-release(5).

 Other than exact matching with "=", and "!=", relative comparisons are supported for

 versioned parameters (e.g. "VERSION_ID"). The comparator can be one of "<", "<=",

 "=", "!=", ">=" and ">". Page 28/44

 AssertArchitecture=, AssertVirtualization=, AssertHost=, AssertKernelCommandLine=,

 AssertKernelVersion=, AssertEnvironment=, AssertSecurity=, AssertCapability=,

 AssertACPower=, AssertNeedsUpdate=, AssertFirstBoot=, AssertPathExists=,

 AssertPathExistsGlob=, AssertPathIsDirectory=, AssertPathIsSymbolicLink=,

 AssertPathIsMountPoint=, AssertPathIsReadWrite=, AssertPathIsEncrypted=,

 AssertDirectoryNotEmpty=, AssertFileNotEmpty=, AssertFileIsExecutable=, AssertUser=,

 AssertGroup=, AssertControlGroupController=, AssertMemory=, AssertCPUs=, AssertOSRelease=

 Similar to the ConditionArchitecture=, ConditionVirtualization=, ..., condition

 settings described above, these settings add assertion checks to the start-up of the

 unit. However, unlike the conditions settings, any assertion setting that is not met

 results in failure of the start job (which means this is logged loudly). Note that

 hitting a configured assertion does not cause the unit to enter the "failed" state (or

 in fact result in any state change of the unit), it affects only the job queued for

 it. Use assertion expressions for units that cannot operate when specific requirements

 are not met, and when this is something the administrator or user should look into.

MAPPING OF UNIT PROPERTIES TO THEIR INVERSES

 Unit settings that create a relationship with a second unit usually show up in properties

 of both units, for example in systemctl show output. In some cases the name of the

 property is the same as the name of the configuration setting, but not always. This table

 lists the properties that are shown on two units which are connected through some

 dependency, and shows which property on "source" unit corresponds to which property on the

 "target" unit.

 Table 3. Forward and reverse unit properties

 ??

 ?"Forward" property ? "Reverse" property ? Where used ?

 ??

 ?Before= ? After= ? ?

 ?? [Unit] section ?

 ?After= ? Before= ? ?

 ??

 ?Requires= ? RequiredBy= ? [Unit] section ?[Install] section ?

 ??

 ?Wants= ? WantedBy= ? [Unit] section ?[Install] section ? Page 29/44

 ??

 ?PartOf= ? ConsistsOf= ? [Unit] section ?an automatic ?

 ? ? ? ?property ?

 ??

 ?BindsTo= ? BoundBy= ? [Unit] section ?an automatic ?

 ? ? ? ?property ?

 ??

 ?Requisite= ? RequisiteOf= ? [Unit] section ?an automatic ?

 ? ? ? ?property ?

 ??

 ?Triggers= ? TriggeredBy= ? Automatic properties, see notes below ?

 ??

 ?Conflicts= ? ConflictedBy= ? [Unit] section ?an automatic ?

 ? ? ? ?property ?

 ??

 ?PropagatesReloadTo= ? ReloadPropagatedFrom= ? ?

 ?? [Unit] section ?

 ?ReloadPropagatedFrom= ? PropagatesReloadTo= ? ?

 ??

 ?Following= ? n/a ? An automatic ? ?

 ? ? ? property ? ?

 ??

 Note: WantedBy= and RequiredBy= are used in the [Install] section to create symlinks in

 .wants/ and .requires/ directories. They cannot be used directly as a unit configuration

 setting.

 Note: ConsistsOf=, BoundBy=, RequisiteOf=, ConflictedBy= are created implicitly along with

 their reverses and cannot be specified directly.

 Note: Triggers= is created implicitly between a socket, path unit, or an automount unit,

 and the unit they activate. By default a unit with the same name is triggered, but this

 can be overridden using Sockets=, Service=, and Unit= settings. See systemd.service(5),

 systemd.socket(5), systemd.path(5), and systemd.automount(5) for details. TriggeredBy= is

 created implicitly on the triggered unit.

 Note: Following= is used to group device aliases and points to the "primary" device unit Page 30/44

 that systemd is using to track device state, usually corresponding to a sysfs path. It

 does not show up in the "target" unit.

[INSTALL] SECTION OPTIONS

 Unit files may include an [Install] section, which carries installation information for

 the unit. This section is not interpreted by systemd(1) during runtime; it is used by the

 enable and disable commands of the systemctl(1) tool during installation of a unit.

 Alias=

 A space-separated list of additional names this unit shall be installed under. The

 names listed here must have the same suffix (i.e. type) as the unit filename. This

 option may be specified more than once, in which case all listed names are used. At

 installation time, systemctl enable will create symlinks from these names to the unit

 filename. Note that not all unit types support such alias names, and this setting is

 not supported for them. Specifically, mount, slice, swap, and automount units do not

 support aliasing.

 WantedBy=, RequiredBy=

 This option may be used more than once, or a space-separated list of unit names may be

 given. A symbolic link is created in the .wants/ or .requires/ directory of each of

 the listed units when this unit is installed by systemctl enable. This has the effect

 that a dependency of type Wants= or Requires= is added from the listed unit to the

 current unit. The primary result is that the current unit will be started when the

 listed unit is started. See the description of Wants= and Requires= in the [Unit]

 section for details.

 WantedBy=foo.service in a service bar.service is mostly equivalent to

 Alias=foo.service.wants/bar.service in the same file. In case of template units,

 systemctl enable must be called with an instance name, and this instance will be added

 to the .wants/ or .requires/ list of the listed unit. E.g. WantedBy=getty.target in a

 service getty@.service will result in systemctl enable getty@tty2.service creating a

 getty.target.wants/getty@tty2.service link to getty@.service.

 Also=

 Additional units to install/deinstall when this unit is installed/deinstalled. If the

 user requests installation/deinstallation of a unit with this option configured,

 systemctl enable and systemctl disable will automatically install/uninstall units

 listed in this option as well. Page 31/44

 This option may be used more than once, or a space-separated list of unit names may be

 given.

 DefaultInstance=

 In template unit files, this specifies for which instance the unit shall be enabled if

 the template is enabled without any explicitly set instance. This option has no effect

 in non-template unit files. The specified string must be usable as instance

 identifier.

 The following specifiers are interpreted in the Install section: %a, %b, %B, %g, %G, %H,

 %i, %j, %l, %m, %n, %N, %o, %p, %u, %U, %v, %w, %W, %%. For their meaning see the next

 section.

SPECIFIERS

 Many settings resolve specifiers which may be used to write generic unit files referring

 to runtime or unit parameters that are replaced when the unit files are loaded. Specifiers

 must be known and resolvable for the setting to be valid. The following specifiers are

 understood:

 Table 4. Specifiers available in unit files

 ??

 ?Specifier ? Meaning ? Details ?

 ??

 ?"%a" ? Architecture ? A short string ?

 ? ? ? identifying the ?

 ? ? ? architecture of the ?

 ? ? ? local system. A string ?

 ? ? ? such as x86, x86-64 or ?

 ? ? ? arm64. See the ?

 ? ? ? architectures defined ?

 ? ? ? for ?

 ? ? ? ConditionArchitecture= ?

 ? ? ? above for a full list. ?

 ??

 ?"%A" ? Operating system image ? The operating system ?

 ? ? version ? image version identifier ?

 ? ? ? of the running system, ? Page 32/44

 ? ? ? as read from the ?

 ? ? ? IMAGE_VERSION= field of ?

 ? ? ? /etc/os-release. If not ?

 ? ? ? set, resolves to an ?

 ? ? ? empty string. See os- ?

 ? ? ? release(5) for more ?

 ? ? ? information. ?

 ??

 ?"%b" ? Boot ID ? The boot ID of the ?

 ? ? ? running system, ?

 ? ? ? formatted as string. See ?

 ? ? ? random(4) for more ?

 ? ? ? information. ?

 ??

 ?"%B" ? Operating system build ? The operating system ?

 ? ? ID ? build identifier of the ?

 ? ? ? running system, as read ?

 ? ? ? from the BUILD_ID= field ?

 ? ? ? of /etc/os-release. If ?

 ? ? ? not set, resolves to an ?

 ? ? ? empty string. See os- ?

 ? ? ? release(5) for more ?

 ? ? ? information. ?

 ??

 ?"%C" ? Cache directory root ? This is either ?

 ? ? ? /var/cache (for the ?

 ? ? ? system manager) or the ?

 ? ? ? path "$XDG_CACHE_HOME" ?

 ? ? ? resolves to (for user ?

 ? ? ? managers). ?

 ??

 ?"%E" ? Configuration directory ? This is either /etc/ ?

 ? ? root ? (for the system manager) ? Page 33/44

 ? ? ? or the path ?

 ? ? ? "$XDG_CONFIG_HOME" ?

 ? ? ? resolves to (for user ?

 ? ? ? managers). ?

 ??

 ?"%f" ? Unescaped filename ? This is either the ?

 ? ? ? unescaped instance name ?

 ? ? ? (if applicable) with / ?

 ? ? ? prepended (if ?

 ? ? ? applicable), or the ?

 ? ? ? unescaped prefix name ?

 ? ? ? prepended with /. This ?

 ? ? ? implements unescaping ?

 ? ? ? according to the rules ?

 ? ? ? for escaping absolute ?

 ? ? ? file system paths ?

 ? ? ? discussed above. ?

 ??

 ?"%g" ? User group ? This is the name of the ?

 ? ? ? group running the ?

 ? ? ? service manager ?

 ? ? ? instance. In case of the ?

 ? ? ? system manager this ?

 ? ? ? resolves to "root". ?

 ??

 ?"%G" ? User GID ? This is the numeric GID ?

 ? ? ? of the user running the ?

 ? ? ? service manager ?

 ? ? ? instance. In case of the ?

 ? ? ? system manager this ?

 ? ? ? resolves to "0". ?

 ??

 ?"%h" ? User home directory ? This is the home ? Page 34/44

 ? ? ? directory of the user ?

 ? ? ? running the service ?

 ? ? ? manager instance. In ?

 ? ? ? case of the system ?

 ? ? ? manager this resolves to ?

 ? ? ? "/root". ?

 ? ? ? ?

 ? ? ? Note that this setting ?

 ? ? ? is not influenced by the ?

 ? ? ? User= setting ?

 ? ? ? configurable in the ?

 ? ? ? [Service] section of the ?

 ? ? ? service unit. ?

 ??

 ?"%H" ? Host name ? The hostname of the ?

 ? ? ? running system at the ?

 ? ? ? point in time the unit ?

 ? ? ? configuration is loaded. ?

 ??

 ?"%i" ? Instance name ? For instantiated units ?

 ? ? ? this is the string ?

 ? ? ? between the first "@" ?

 ? ? ? character and the type ?

 ? ? ? suffix. Empty for ?

 ? ? ? non-instantiated units. ?

 ??

 ?"%I" ? Unescaped instance name ? Same as "%i", but with ?

 ? ? ? escaping undone. ?

 ??

 ?"%j" ? Final component of the ? This is the string ?

 ? ? prefix ? between the last "-" and ?

 ? ? ? the end of the prefix ?

 ? ? ? name. If there is no ? Page 35/44

 ? ? ? "-", this is the same as ?

 ? ? ? "%p". ?

 ??

 ?"%J" ? Unescaped final ? Same as "%j", but with ?

 ? ? component of the prefix ? escaping undone. ?

 ??

 ?"%l" ? Short host name ? The hostname of the ?

 ? ? ? running system at the ?

 ? ? ? point in time the unit ?

 ? ? ? configuration is loaded, ?

 ? ? ? truncated at the first ?

 ? ? ? dot to remove any domain ?

 ? ? ? component. ?

 ??

 ?"%L" ? Log directory root ? This is either /var/log ?

 ? ? ? (for the system manager) ?

 ? ? ? or the path ?

 ? ? ? "$XDG_CONFIG_HOME" ?

 ? ? ? resolves to with /log ?

 ? ? ? appended (for user ?

 ? ? ? managers). ?

 ??

 ?"%m" ? Machine ID ? The machine ID of the ?

 ? ? ? running system, ?

 ? ? ? formatted as string. See ?

 ? ? ? machine-id(5) for more ?

 ? ? ? information. ?

 ??

 ?"%M" ? Operating system image ? The operating system ?

 ? ? identifier ? image identifier of the ?

 ? ? ? running system, as read ?

 ? ? ? from the IMAGE_ID= field ?

 ? ? ? of /etc/os-release. If ? Page 36/44

 ? ? ? not set, resolves to an ?

 ? ? ? empty string. See os- ?

 ? ? ? release(5) for more ?

 ? ? ? information. ?

 ??

 ?"%n" ? Full unit name ? ?

 ??

 ?"%N" ? Full unit name ? Same as "%n", but with ?

 ? ? ? the type suffix removed. ?

 ??

 ?"%o" ? Operating system ID ? The operating system ?

 ? ? ? identifier of the ?

 ? ? ? running system, as read ?

 ? ? ? from the ID= field of ?

 ? ? ? /etc/os-release. See os- ?

 ? ? ? release(5) for more ?

 ? ? ? information. ?

 ??

 ?"%p" ? Prefix name ? For instantiated units, ?

 ? ? ? this refers to the ?

 ? ? ? string before the first ?

 ? ? ? "@" character of the ?

 ? ? ? unit name. For ?

 ? ? ? non-instantiated units, ?

 ? ? ? same as "%N". ?

 ??

 ?"%P" ? Unescaped prefix name ? Same as "%p", but with ?

 ? ? ? escaping undone. ?

 ??

 ?"%s" ? User shell ? This is the shell of the ?

 ? ? ? user running the service ?

 ? ? ? manager instance. In ?

 ? ? ? case of the system ? Page 37/44

 ? ? ? manager this resolves to ?

 ? ? ? "/bin/sh". ?

 ??

 ?"%S" ? State directory root ? This is either /var/lib ?

 ? ? ? (for the system manager) ?

 ? ? ? or the path ?

 ? ? ? "$XDG_CONFIG_HOME" ?

 ? ? ? resolves to (for user ?

 ? ? ? managers). ?

 ??

 ?"%t" ? Runtime directory root ? This is either /run/ ?

 ? ? ? (for the system manager) ?

 ? ? ? or the path ?

 ? ? ? "$XDG_RUNTIME_DIR" ?

 ? ? ? resolves to (for user ?

 ? ? ? managers). ?

 ??

 ?"%T" ? Directory for temporary ? This is either /tmp or ?

 ? ? files ? the path "$TMPDIR", ?

 ? ? ? "$TEMP" or "$TMP" are ?

 ? ? ? set to. (Note that the ?

 ? ? ? directory may be ?

 ? ? ? specified without a ?

 ? ? ? trailing slash.) ?

 ??

 ?"%u" ? User name ? This is the name of the ?

 ? ? ? user running the service ?

 ? ? ? manager instance. In ?

 ? ? ? case of the system ?

 ? ? ? manager this resolves to ?

 ? ? ? "root". ?

 ? ? ? ?

 ? ? ? Note that this setting ? Page 38/44

 ? ? ? is not influenced by the ?

 ? ? ? User= setting ?

 ? ? ? configurable in the ?

 ? ? ? [Service] section of the ?

 ? ? ? service unit. ?

 ??

 ?"%U" ? User UID ? This is the numeric UID ?

 ? ? ? of the user running the ?

 ? ? ? service manager ?

 ? ? ? instance. In case of the ?

 ? ? ? system manager this ?

 ? ? ? resolves to "0". ?

 ? ? ? ?

 ? ? ? Note that this setting ?

 ? ? ? is not influenced by the ?

 ? ? ? User= setting ?

 ? ? ? configurable in the ?

 ? ? ? [Service] section of the ?

 ? ? ? service unit. ?

 ??

 ?"%v" ? Kernel release ? Identical to uname -r ?

 ? ? ? output. ?

 ??

 ?"%V" ? Directory for larger and ? This is either /var/tmp ?

 ? ? persistent temporary ? or the path "$TMPDIR", ?

 ? ? files ? "$TEMP" or "$TMP" are ?

 ? ? ? set to. (Note that the ?

 ? ? ? directory may be ?

 ? ? ? specified without a ?

 ? ? ? trailing slash.) ?

 ??

 ?"%w" ? Operating system version ? The operating system ?

 ? ? ID ? version identifier of ? Page 39/44

 ? ? ? the running system, as ?

 ? ? ? read from the ?

 ? ? ? VERSION_ID= field of ?

 ? ? ? /etc/os-release. If not ?

 ? ? ? set, resolves to an ?

 ? ? ? empty string. See os- ?

 ? ? ? release(5) for more ?

 ? ? ? information. ?

 ??

 ?"%W" ? Operating system variant ? The operating system ?

 ? ? ID ? variant identifier of ?

 ? ? ? the running system, as ?

 ? ? ? read from the ?

 ? ? ? VARIANT_ID= field of ?

 ? ? ? /etc/os-release. If not ?

 ? ? ? set, resolves to an ?

 ? ? ? empty string. See os- ?

 ? ? ? release(5) for more ?

 ? ? ? information. ?

 ??

 ?"%%" ? Single percent sign ? Use "%%" in place of "%" ?

 ? ? ? to specify a single ?

 ? ? ? percent sign. ?

 ??

EXAMPLES

 Example 1. Allowing units to be enabled

 The following snippet (highlighted) allows a unit (e.g. foo.service) to be enabled via

 systemctl enable:

 [Unit]

 Description=Foo

 [Service]

 ExecStart=/usr/sbin/foo-daemon

 [Install] Page 40/44

 WantedBy=multi-user.target

 After running systemctl enable, a symlink

 /etc/systemd/system/multi-user.target.wants/foo.service linking to the actual unit will be

 created. It tells systemd to pull in the unit when starting multi-user.target. The inverse

 systemctl disable will remove that symlink again.

 Example 2. Overriding vendor settings

 There are two methods of overriding vendor settings in unit files: copying the unit file

 from /lib/systemd/system to /etc/systemd/system and modifying the chosen settings.

 Alternatively, one can create a directory named unit.d/ within /etc/systemd/system and

 place a drop-in file name.conf there that only changes the specific settings one is

 interested in. Note that multiple such drop-in files are read if present, processed in

 lexicographic order of their filename.

 The advantage of the first method is that one easily overrides the complete unit, the

 vendor unit is not parsed at all anymore. It has the disadvantage that improvements to the

 unit file by the vendor are not automatically incorporated on updates.

 The advantage of the second method is that one only overrides the settings one

 specifically wants, where updates to the unit by the vendor automatically apply. This has

 the disadvantage that some future updates by the vendor might be incompatible with the

 local changes.

 This also applies for user instances of systemd, but with different locations for the unit

 files. See the section on unit load paths for further details.

 Suppose there is a vendor-supplied unit /lib/systemd/system/httpd.service with the

 following contents:

 [Unit]

 Description=Some HTTP server

 After=remote-fs.target sqldb.service

 Requires=sqldb.service

 AssertPathExists=/srv/webserver

 [Service]

 Type=notify

 ExecStart=/usr/sbin/some-fancy-httpd-server

 Nice=5

 [Install] Page 41/44

 WantedBy=multi-user.target

 Now one wants to change some settings as an administrator: firstly, in the local setup,

 /srv/webserver might not exist, because the HTTP server is configured to use /srv/www

 instead. Secondly, the local configuration makes the HTTP server also depend on a memory

 cache service, memcached.service, that should be pulled in (Requires=) and also be ordered

 appropriately (After=). Thirdly, in order to harden the service a bit more, the

 administrator would like to set the PrivateTmp= setting (see systemd.exec(5) for details).

 And lastly, the administrator would like to reset the niceness of the service to its

 default value of 0.

 The first possibility is to copy the unit file to /etc/systemd/system/httpd.service and

 change the chosen settings:

 [Unit]

 Description=Some HTTP server

 After=remote-fs.target sqldb.service memcached.service

 Requires=sqldb.service memcached.service

 AssertPathExists=/srv/www

 [Service]

 Type=notify

 ExecStart=/usr/sbin/some-fancy-httpd-server

 Nice=0

 PrivateTmp=yes

 [Install]

 WantedBy=multi-user.target

 Alternatively, the administrator could create a drop-in file

 /etc/systemd/system/httpd.service.d/local.conf with the following contents:

 [Unit]

 After=memcached.service

 Requires=memcached.service

 # Reset all assertions and then re-add the condition we want

 AssertPathExists=

 AssertPathExists=/srv/www

 [Service]

 Nice=0 Page 42/44

 PrivateTmp=yes

 Note that for drop-in files, if one wants to remove entries from a setting that is parsed

 as a list (and is not a dependency), such as AssertPathExists= (or e.g. ExecStart= in

 service units), one needs to first clear the list before re-adding all entries except the

 one that is to be removed. Dependencies (After=, etc.) cannot be reset to an empty list,

 so dependencies can only be added in drop-ins. If you want to remove dependencies, you

 have to override the entire unit.

 Example 3. Top level drop-ins with template units

 Top level per-type drop-ins can be used to change some aspect of all units of a particular

 type. For example by creating the /etc/systemd/system/service.d/ directory with a drop-in

 file, the contents of the drop-in file can be applied to all service units. We can take

 this further by having the top-level drop-in instantiate a secondary helper unit. Consider

 for example the following set of units and drop-in files where we install an OnFailure=

 dependency for all service units.

 /etc/systemd/system/failure-handler@.service:

 [Unit]

 Description=My failure handler for %i

 [Service]

 Type=oneshot

 # Perform some special action for when %i exits unexpectedly.

 ExecStart=/usr/sbin/myfailurehandler %i

 We can then add an instance of failure-handler@.service as an OnFailure= dependency for

 all service units.

 /etc/systemd/system/service.d/10-all.conf:

 [Unit]

 OnFailure=failure-handler@%N.service

 Now, after running systemctl daemon-reload all services will have acquired an OnFailure=

 dependency on failure-handler@%N.service. The template instance units will also have

 gained the dependency which results in the creation of a recursive dependency chain. We

 can break the chain by disabling the drop-in for the template instance units via a symlink

 to /dev/null:

 mkdir /etc/systemd/system/failure-handler@.service.d/

 ln -s /dev/null /etc/systemd/system/failure-handler@.service.d/10-all.conf Page 43/44

 systemctl daemon-reload

 This ensures that if a failure-handler@.service instance fails it will not trigger an

 instance named failure-handler@failure-handler.service.

SEE ALSO

 systemd(1), systemctl(1), systemd-system.conf(5), systemd.special(7), systemd.service(5),

 systemd.socket(5), systemd.device(5), systemd.mount(5), systemd.automount(5),

 systemd.swap(5), systemd.target(5), systemd.path(5), systemd.timer(5), systemd.scope(5),

 systemd.slice(5), systemd.time(7), systemd-analyze(1), capabilities(7),

 systemd.directives(7), uname(1)

NOTES

 1. Interface Portability and Stability Promise

 https://systemd.io/PORTABILITY_AND_STABILITY/

systemd 249 SYSTEMD.UNIT(5)

Page 44/44

