
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd.socket.5'

$ man systemd.socket.5

SYSTEMD.SOCKET(5) systemd.socket SYSTEMD.SOCKET(5)

NAME

 systemd.socket - Socket unit configuration

SYNOPSIS

 socket.socket

DESCRIPTION

 A unit configuration file whose name ends in ".socket" encodes information about an IPC or

 network socket or a file system FIFO controlled and supervised by systemd, for

 socket-based activation.

 This man page lists the configuration options specific to this unit type. See

 systemd.unit(5) for the common options of all unit configuration files. The common

 configuration items are configured in the generic [Unit] and [Install] sections. The

 socket specific configuration options are configured in the [Socket] section.

 Additional options are listed in systemd.exec(5), which define the execution environment

 the ExecStartPre=, ExecStartPost=, ExecStopPre= and ExecStopPost= commands are executed

 in, and in systemd.kill(5), which define the way the processes are terminated, and in

 systemd.resource-control(5), which configure resource control settings for the processes

 of the socket.

 For each socket unit, a matching service unit must exist, describing the service to start

 on incoming traffic on the socket (see systemd.service(5) for more information about

 .service units). The name of the .service unit is by default the same as the name of the

 .socket unit, but can be altered with the Service= option described below. Depending on

 the setting of the Accept= option described below, this .service unit must either be named Page 1/13

 like the .socket unit, but with the suffix replaced, unless overridden with Service=; or

 it must be a template unit named the same way. Example: a socket file foo.socket needs a

 matching service foo.service if Accept=no is set. If Accept=yes is set, a service template

 foo@.service must exist from which services are instantiated for each incoming connection.

 No implicit WantedBy= or RequiredBy= dependency from the socket to the service is added.

 This means that the service may be started without the socket, in which case it must be

 able to open sockets by itself. To prevent this, an explicit Requires= dependency may be

 added.

 Socket units may be used to implement on-demand starting of services, as well as

 parallelized starting of services. See the blog stories linked at the end for an

 introduction.

 Note that the daemon software configured for socket activation with socket units needs to

 be able to accept sockets from systemd, either via systemd's native socket passing

 interface (see sd_listen_fds(3) for details about the precise protocol used and the order

 in which the file descriptors are passed) or via traditional inetd(8)-style socket passing

 (i.e. sockets passed in via standard input and output, using StandardInput=socket in the

 service file).

 All network sockets allocated through .socket units are allocated in the host's network

 namespace (see network_namespaces(7)). This does not mean however that the service

 activated by a configured socket unit has to be part of the host's network namespace as

 well. It is supported and even good practice to run services in their own network

 namespace (for example through PrivateNetwork=, see systemd.exec(5)), receiving only the

 sockets configured through socket-activation from the host's namespace. In such a set-up

 communication within the host's network namespace is only permitted through the activation

 sockets passed in while all sockets allocated from the service code itself will be

 associated with the service's own namespace, and thus possibly subject to a restrictive

 configuration.

AUTOMATIC DEPENDENCIES

 Implicit Dependencies

 The following dependencies are implicitly added:

 ? Socket units automatically gain a Before= dependency on the service units they

 activate.

 ? Socket units referring to file system paths (such as AF_UNIX sockets or FIFOs) Page 2/13

 implicitly gain Requires= and After= dependencies on all mount units necessary to

 access those paths.

 ? Socket units using the BindToDevice= setting automatically gain a BindsTo= and After=

 dependency on the device unit encapsulating the specified network interface.

 Additional implicit dependencies may be added as result of execution and resource control

 parameters as documented in systemd.exec(5) and systemd.resource-control(5).

 Default Dependencies

 The following dependencies are added unless DefaultDependencies=no is set:

 ? Socket units automatically gain a Before= dependency on sockets.target.

 ? Socket units automatically gain a pair of After= and Requires= dependency on

 sysinit.target, and a pair of Before= and Conflicts= dependencies on shutdown.target.

 These dependencies ensure that the socket unit is started before normal services at

 boot, and is stopped on shutdown. Only sockets involved with early boot or late system

 shutdown should disable DefaultDependencies= option.

OPTIONS

 Socket files must include a [Socket] section, which carries information about the socket

 or FIFO it supervises. A number of options that may be used in this section are shared

 with other unit types. These options are documented in systemd.exec(5) and

 systemd.kill(5). The options specific to the [Socket] section of socket units are the

 following:

 ListenStream=, ListenDatagram=, ListenSequentialPacket=

 Specifies an address to listen on for a stream (SOCK_STREAM), datagram (SOCK_DGRAM),

 or sequential packet (SOCK_SEQPACKET) socket, respectively. The address can be written

 in various formats:

 If the address starts with a slash ("/"), it is read as file system socket in the

 AF_UNIX socket family.

 If the address starts with an at symbol ("@"), it is read as abstract namespace socket

 in the AF_UNIX family. The "@" is replaced with a NUL character before binding. For

 details, see unix(7).

 If the address string is a single number, it is read as port number to listen on via

 IPv6. Depending on the value of BindIPv6Only= (see below) this might result in the

 service being available via both IPv6 and IPv4 (default) or just via IPv6.

 If the address string is a string in the format "v.w.x.y:z", it is interpreted as IPv4 Page 3/13

 address v.w.x.y and port z.

 If the address string is a string in the format "[x]:y", it is interpreted as IPv6

 address x and port y. An optional interface scope (interface name or number) may be

 specified after a "%" symbol: "[x]:y%dev". Interface scopes are only useful with

 link-local addresses, because the kernel ignores them in other cases. Note that if an

 address is specified as IPv6, it might still make the service available via IPv4 too,

 depending on the BindIPv6Only= setting (see below).

 If the address string is a string in the format "vsock:x:y", it is read as CID x on a

 port y address in the AF_VSOCK family. The CID is a unique 32-bit integer identifier

 in AF_VSOCK analogous to an IP address. Specifying the CID is optional, and may be set

 to the empty string.

 Note that SOCK_SEQPACKET (i.e. ListenSequentialPacket=) is only available for AF_UNIX

 sockets. SOCK_STREAM (i.e. ListenStream=) when used for IP sockets refers to TCP

 sockets, SOCK_DGRAM (i.e. ListenDatagram=) to UDP.

 These options may be specified more than once, in which case incoming traffic on any

 of the sockets will trigger service activation, and all listed sockets will be passed

 to the service, regardless of whether there is incoming traffic on them or not. If the

 empty string is assigned to any of these options, the list of addresses to listen on

 is reset, all prior uses of any of these options will have no effect.

 It is also possible to have more than one socket unit for the same service when using

 Service=, and the service will receive all the sockets configured in all the socket

 units. Sockets configured in one unit are passed in the order of configuration, but no

 ordering between socket units is specified.

 If an IP address is used here, it is often desirable to listen on it before the

 interface it is configured on is up and running, and even regardless of whether it

 will be up and running at any point. To deal with this, it is recommended to set the

 FreeBind= option described below.

 ListenFIFO=

 Specifies a file system FIFO (see fifo(7) for details) to listen on. This expects an

 absolute file system path as argument. Behavior otherwise is very similar to the

 ListenDatagram= directive above.

 ListenSpecial=

 Specifies a special file in the file system to listen on. This expects an absolute Page 4/13

 file system path as argument. Behavior otherwise is very similar to the ListenFIFO=

 directive above. Use this to open character device nodes as well as special files in

 /proc/ and /sys/.

 ListenNetlink=

 Specifies a Netlink family to create a socket for to listen on. This expects a short

 string referring to the AF_NETLINK family name (such as audit or kobject-uevent) as

 argument, optionally suffixed by a whitespace followed by a multicast group integer.

 Behavior otherwise is very similar to the ListenDatagram= directive above.

 ListenMessageQueue=

 Specifies a POSIX message queue name to listen on (see mq_overview(7) for details).

 This expects a valid message queue name (i.e. beginning with "/"). Behavior otherwise

 is very similar to the ListenFIFO= directive above. On Linux message queue descriptors

 are actually file descriptors and can be inherited between processes.

 ListenUSBFunction=

 Specifies a USB FunctionFS[1] endpoints location to listen on, for implementation of

 USB gadget functions. This expects an absolute file system path of a FunctionFS mount

 point as the argument. Behavior otherwise is very similar to the ListenFIFO= directive

 above. Use this to open the FunctionFS endpoint ep0. When using this option, the

 activated service has to have the USBFunctionDescriptors= and USBFunctionStrings=

 options set.

 SocketProtocol=

 Takes one of udplite or sctp. The socket will use the UDP-Lite (IPPROTO_UDPLITE) or

 SCTP (IPPROTO_SCTP) protocol, respectively.

 BindIPv6Only=

 Takes one of default, both or ipv6-only. Controls the IPV6_V6ONLY socket option (see

 ipv6(7) for details). If both, IPv6 sockets bound will be accessible via both IPv4 and

 IPv6. If ipv6-only, they will be accessible via IPv6 only. If default (which is the

 default, surprise!), the system wide default setting is used, as controlled by

 /proc/sys/net/ipv6/bindv6only, which in turn defaults to the equivalent of both.

 Backlog=

 Takes an unsigned integer argument. Specifies the number of connections to queue that

 have not been accepted yet. This setting matters only for stream and sequential packet

 sockets. See listen(2) for details. Defaults to SOMAXCONN (128). Page 5/13

 BindToDevice=

 Specifies a network interface name to bind this socket to. If set, traffic will only

 be accepted from the specified network interfaces. This controls the SO_BINDTODEVICE

 socket option (see socket(7) for details). If this option is used, an implicit

 dependency from this socket unit on the network interface device unit is created (see

 systemd.device(5)). Note that setting this parameter might result in additional

 dependencies to be added to the unit (see above).

 SocketUser=, SocketGroup=

 Takes a UNIX user/group name. When specified, all AF_UNIX sockets and FIFO nodes in

 the file system are owned by the specified user and group. If unset (the default), the

 nodes are owned by the root user/group (if run in system context) or the invoking

 user/group (if run in user context). If only a user is specified but no group, then

 the group is derived from the user's default group.

 SocketMode=

 If listening on a file system socket or FIFO, this option specifies the file system

 access mode used when creating the file node. Takes an access mode in octal notation.

 Defaults to 0666.

 DirectoryMode=

 If listening on a file system socket or FIFO, the parent directories are automatically

 created if needed. This option specifies the file system access mode used when

 creating these directories. Takes an access mode in octal notation. Defaults to 0755.

 Accept=

 Takes a boolean argument. If yes, a service instance is spawned for each incoming

 connection and only the connection socket is passed to it. If no, all listening

 sockets themselves are passed to the started service unit, and only one service unit

 is spawned for all connections (also see above). This value is ignored for datagram

 sockets and FIFOs where a single service unit unconditionally handles all incoming

 traffic. Defaults to no. For performance reasons, it is recommended to write new

 daemons only in a way that is suitable for Accept=no. A daemon listening on an AF_UNIX

 socket may, but does not need to, call close(2) on the received socket before exiting.

 However, it must not unlink the socket from a file system. It should not invoke

 shutdown(2) on sockets it got with Accept=no, but it may do so for sockets it got with

 Accept=yes set. Setting Accept=yes is mostly useful to allow daemons designed for Page 6/13

 usage with inetd(8) to work unmodified with systemd socket activation.

 For IPv4 and IPv6 connections, the REMOTE_ADDR environment variable will contain the

 remote IP address, and REMOTE_PORT will contain the remote port. This is the same as

 the format used by CGI. For SOCK_RAW, the port is the IP protocol.

 Writable=

 Takes a boolean argument. May only be used in conjunction with ListenSpecial=. If

 true, the specified special file is opened in read-write mode, if false, in read-only

 mode. Defaults to false.

 FlushPending=

 Takes a boolean argument. May only be used when Accept=no. If yes, the socket's

 buffers are cleared after the triggered service exited. This causes any pending data

 to be flushed and any pending incoming connections to be rejected. If no, the socket's

 buffers won't be cleared, permitting the service to handle any pending connections

 after restart, which is the usually expected behaviour. Defaults to no.

 MaxConnections=

 The maximum number of connections to simultaneously run services instances for, when

 Accept=yes is set. If more concurrent connections are coming in, they will be refused

 until at least one existing connection is terminated. This setting has no effect on

 sockets configured with Accept=no or datagram sockets. Defaults to 64.

 MaxConnectionsPerSource=

 The maximum number of connections for a service per source IP address. This is very

 similar to the MaxConnections= directive above. Disabled by default.

 KeepAlive=

 Takes a boolean argument. If true, the TCP/IP stack will send a keep alive message

 after 2h (depending on the configuration of /proc/sys/net/ipv4/tcp_keepalive_time) for

 all TCP streams accepted on this socket. This controls the SO_KEEPALIVE socket option

 (see socket(7) and the TCP Keepalive HOWTO[2] for details.) Defaults to false.

 KeepAliveTimeSec=

 Takes time (in seconds) as argument. The connection needs to remain idle before TCP

 starts sending keepalive probes. This controls the TCP_KEEPIDLE socket option (see

 socket(7) and the TCP Keepalive HOWTO[2] for details.) Defaults value is 7200 seconds

 (2 hours).

 KeepAliveIntervalSec= Page 7/13

 Takes time (in seconds) as argument between individual keepalive probes, if the socket

 option SO_KEEPALIVE has been set on this socket. This controls the TCP_KEEPINTVL

 socket option (see socket(7) and the TCP Keepalive HOWTO[2] for details.) Defaults

 value is 75 seconds.

 KeepAliveProbes=

 Takes an integer as argument. It is the number of unacknowledged probes to send before

 considering the connection dead and notifying the application layer. This controls the

 TCP_KEEPCNT socket option (see socket(7) and the TCP Keepalive HOWTO[2] for details.)

 Defaults value is 9.

 NoDelay=

 Takes a boolean argument. TCP Nagle's algorithm works by combining a number of small

 outgoing messages, and sending them all at once. This controls the TCP_NODELAY socket

 option (see tcp(7)). Defaults to false.

 Priority=

 Takes an integer argument controlling the priority for all traffic sent from this

 socket. This controls the SO_PRIORITY socket option (see socket(7) for details.).

 DeferAcceptSec=

 Takes time (in seconds) as argument. If set, the listening process will be awakened

 only when data arrives on the socket, and not immediately when connection is

 established. When this option is set, the TCP_DEFER_ACCEPT socket option will be used

 (see tcp(7)), and the kernel will ignore initial ACK packets without any data. The

 argument specifies the approximate amount of time the kernel should wait for incoming

 data before falling back to the normal behavior of honoring empty ACK packets. This

 option is beneficial for protocols where the client sends the data first (e.g. HTTP,

 in contrast to SMTP), because the server process will not be woken up unnecessarily

 before it can take any action.

 If the client also uses the TCP_DEFER_ACCEPT option, the latency of the initial

 connection may be reduced, because the kernel will send data in the final packet

 establishing the connection (the third packet in the "three-way handshake").

 Disabled by default.

 ReceiveBuffer=, SendBuffer=

 Takes an integer argument controlling the receive or send buffer sizes of this socket,

 respectively. This controls the SO_RCVBUF and SO_SNDBUF socket options (see socket(7) Page 8/13

 for details.). The usual suffixes K, M, G are supported and are understood to the base

 of 1024.

 IPTOS=

 Takes an integer argument controlling the IP Type-Of-Service field for packets

 generated from this socket. This controls the IP_TOS socket option (see ip(7) for

 details.). Either a numeric string or one of low-delay, throughput, reliability or

 low-cost may be specified.

 IPTTL=

 Takes an integer argument controlling the IPv4 Time-To-Live/IPv6 Hop-Count field for

 packets generated from this socket. This sets the IP_TTL/IPV6_UNICAST_HOPS socket

 options (see ip(7) and ipv6(7) for details.)

 Mark=

 Takes an integer value. Controls the firewall mark of packets generated by this

 socket. This can be used in the firewall logic to filter packets from this socket.

 This sets the SO_MARK socket option. See iptables(8) for details.

 ReusePort=

 Takes a boolean value. If true, allows multiple bind(2)s to this TCP or UDP port. This

 controls the SO_REUSEPORT socket option. See socket(7) for details.

 SmackLabel=, SmackLabelIPIn=, SmackLabelIPOut=

 Takes a string value. Controls the extended attributes "security.SMACK64",

 "security.SMACK64IPIN" and "security.SMACK64IPOUT", respectively, i.e. the security

 label of the FIFO, or the security label for the incoming or outgoing connections of

 the socket, respectively. See Smack.txt[3] for details.

 SELinuxContextFromNet=

 Takes a boolean argument. When true, systemd will attempt to figure out the SELinux

 label used for the instantiated service from the information handed by the peer over

 the network. Note that only the security level is used from the information provided

 by the peer. Other parts of the resulting SELinux context originate from either the

 target binary that is effectively triggered by socket unit or from the value of the

 SELinuxContext= option. This configuration option applies only when activated service

 is passed in single socket file descriptor, i.e. service instances that have standard

 input connected to a socket or services triggered by exactly one socket unit. Also

 note that this option is useful only when MLS/MCS SELinux policy is deployed. Defaults Page 9/13

 to "false".

 PipeSize=

 Takes a size in bytes. Controls the pipe buffer size of FIFOs configured in this

 socket unit. See fcntl(2) for details. The usual suffixes K, M, G are supported and

 are understood to the base of 1024.

 MessageQueueMaxMessages=, MessageQueueMessageSize=

 These two settings take integer values and control the mq_maxmsg field or the

 mq_msgsize field, respectively, when creating the message queue. Note that either none

 or both of these variables need to be set. See mq_setattr(3) for details.

 FreeBind=

 Takes a boolean value. Controls whether the socket can be bound to non-local IP

 addresses. This is useful to configure sockets listening on specific IP addresses

 before those IP addresses are successfully configured on a network interface. This

 sets the IP_FREEBIND/IPV6_FREEBIND socket option. For robustness reasons it is

 recommended to use this option whenever you bind a socket to a specific IP address.

 Defaults to false.

 Transparent=

 Takes a boolean value. Controls the IP_TRANSPARENT/IPV6_TRANSPARENT socket option.

 Defaults to false.

 Broadcast=

 Takes a boolean value. This controls the SO_BROADCAST socket option, which allows

 broadcast datagrams to be sent from this socket. Defaults to false.

 PassCredentials=

 Takes a boolean value. This controls the SO_PASSCRED socket option, which allows

 AF_UNIX sockets to receive the credentials of the sending process in an ancillary

 message. Defaults to false.

 PassSecurity=

 Takes a boolean value. This controls the SO_PASSSEC socket option, which allows

 AF_UNIX sockets to receive the security context of the sending process in an ancillary

 message. Defaults to false.

 PassPacketInfo=

 Takes a boolean value. This controls the IP_PKTINFO, IPV6_RECVPKTINFO, NETLINK_PKTINFO

 or PACKET_AUXDATA socket options, which enable reception of additional per-packet Page 10/13

 metadata as ancillary message, on AF_INET, AF_INET6, AF_UNIX and AF_PACKET sockets.

 Defaults to false.

 Timestamping=

 Takes one of "off", "us" (alias: "usec", "?s") or "ns" (alias: "nsec"). This controls

 the SO_TIMESTAMP or SO_TIMESTAMPNS socket options, and enables whether ingress network

 traffic shall carry timestamping metadata. Defaults to off.

 TCPCongestion=

 Takes a string value. Controls the TCP congestion algorithm used by this socket.

 Should be one of "westwood", "veno", "cubic", "lp" or any other available algorithm

 supported by the IP stack. This setting applies only to stream sockets.

 ExecStartPre=, ExecStartPost=

 Takes one or more command lines, which are executed before or after the listening

 sockets/FIFOs are created and bound, respectively. The first token of the command line

 must be an absolute filename, then followed by arguments for the process. Multiple

 command lines may be specified following the same scheme as used for ExecStartPre= of

 service unit files.

 ExecStopPre=, ExecStopPost=

 Additional commands that are executed before or after the listening sockets/FIFOs are

 closed and removed, respectively. Multiple command lines may be specified following

 the same scheme as used for ExecStartPre= of service unit files.

 TimeoutSec=

 Configures the time to wait for the commands specified in ExecStartPre=,

 ExecStartPost=, ExecStopPre= and ExecStopPost= to finish. If a command does not exit

 within the configured time, the socket will be considered failed and be shut down

 again. All commands still running will be terminated forcibly via SIGTERM, and after

 another delay of this time with SIGKILL. (See KillMode= in systemd.kill(5).) Takes a

 unit-less value in seconds, or a time span value such as "5min 20s". Pass "0" to

 disable the timeout logic. Defaults to DefaultTimeoutStartSec= from the manager

 configuration file (see systemd-system.conf(5)).

 Service=

 Specifies the service unit name to activate on incoming traffic. This setting is only

 allowed for sockets with Accept=no. It defaults to the service that bears the same

 name as the socket (with the suffix replaced). In most cases, it should not be Page 11/13

 necessary to use this option. Note that setting this parameter might result in

 additional dependencies to be added to the unit (see above).

 RemoveOnStop=

 Takes a boolean argument. If enabled, any file nodes created by this socket unit are

 removed when it is stopped. This applies to AF_UNIX sockets in the file system, POSIX

 message queues, FIFOs, as well as any symlinks to them configured with Symlinks=.

 Normally, it should not be necessary to use this option, and is not recommended as

 services might continue to run after the socket unit has been terminated and it should

 still be possible to communicate with them via their file system node. Defaults to

 off.

 Symlinks=

 Takes a list of file system paths. The specified paths will be created as symlinks to

 the AF_UNIX socket path or FIFO path of this socket unit. If this setting is used,

 only one AF_UNIX socket in the file system or one FIFO may be configured for the

 socket unit. Use this option to manage one or more symlinked alias names for a socket,

 binding their lifecycle together. Note that if creation of a symlink fails this is not

 considered fatal for the socket unit, and the socket unit may still start. If an empty

 string is assigned, the list of paths is reset. Defaults to an empty list.

 FileDescriptorName=

 Assigns a name to all file descriptors this socket unit encapsulates. This is useful

 to help activated services identify specific file descriptors, if multiple fds are

 passed. Services may use the sd_listen_fds_with_names(3) call to acquire the names

 configured for the received file descriptors. Names may contain any ASCII character,

 but must exclude control characters and ":", and must be at most 255 characters in

 length. If this setting is not used, the file descriptor name defaults to the name of

 the socket unit, including its .socket suffix.

 TriggerLimitIntervalSec=, TriggerLimitBurst=

 Configures a limit on how often this socket unit my be activated within a specific

 time interval. The TriggerLimitIntervalSec= may be used to configure the length of the

 time interval in the usual time units "us", "ms", "s", "min", "h", ... and defaults to

 2s (See systemd.time(7) for details on the various time units understood). The

 TriggerLimitBurst= setting takes a positive integer value and specifies the number of

 permitted activations per time interval, and defaults to 200 for Accept=yes sockets Page 12/13

 (thus by default permitting 200 activations per 2s), and 20 otherwise (20 activations

 per 2s). Set either to 0 to disable any form of trigger rate limiting. If the limit is

 hit, the socket unit is placed into a failure mode, and will not be connectible

 anymore until restarted. Note that this limit is enforced before the service

 activation is enqueued.

 Check systemd.exec(5) and systemd.kill(5) for more settings.

SEE ALSO

 systemd(1), systemctl(1), systemd-system.conf(5), systemd.unit(5), systemd.exec(5),

 systemd.kill(5), systemd.resource-control(5), systemd.service(5), systemd.directives(7),

 sd_listen_fds(3), sd_listen_fds_with_names(3)

 For more extensive descriptions see the "systemd for Developers" series: Socket

 Activation[4], Socket Activation, part II[5], Converting inetd Services[6], Socket

 Activated Internet Services and OS Containers[7].

NOTES

 1. USB FunctionFS

 https://www.kernel.org/doc/Documentation/usb/functionfs.txt

 2. TCP Keepalive HOWTO

 http://www.tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO/

 3. Smack.txt

 https://www.kernel.org/doc/Documentation/security/Smack.txt

 4. Socket Activation

 http://0pointer.de/blog/projects/socket-activation.html

 5. Socket Activation, part II

 http://0pointer.de/blog/projects/socket-activation2.html

 6. Converting inetd Services

 http://0pointer.de/blog/projects/inetd.html

 7. Socket Activated Internet Services and OS Containers

 http://0pointer.de/blog/projects/socket-activated-containers.html

systemd 249 SYSTEMD.SOCKET(5)

Page 13/13

