
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd.netdev.5'

$ man systemd.netdev.5

SYSTEMD.NETDEV(5) systemd.network SYSTEMD.NETDEV(5)

NAME

 systemd.netdev - Virtual Network Device configuration

SYNOPSIS

 netdev.netdev

DESCRIPTION

 A plain ini-style text file that encodes configuration about a virtual network device,

 used by systemd-networkd(8). See systemd.syntax(7) for a general description of the

 syntax.

 The main Virtual Network Device file must have the extension .netdev; other extensions are

 ignored. Virtual network devices are created as soon as networkd is started. If a netdev

 with the specified name already exists, networkd will use that as-is rather than create

 its own. Note that the settings of the pre-existing netdev will not be changed by

 networkd.

 The .netdev files are read from the files located in the system network directory

 /lib/systemd/network, the volatile runtime network directory /run/systemd/network and the

 local administration network directory /etc/systemd/network. All configuration files are

 collectively sorted and processed in lexical order, regardless of the directories in which

 they live. However, files with identical filenames replace each other. Files in /etc/ have

 the highest priority, files in /run/ take precedence over files with the same name in

 /lib/. This can be used to override a system-supplied configuration file with a local file

 if needed. As a special case, an empty file (file size 0) or symlink with the same name

 pointing to /dev/null disables the configuration file entirely (it is "masked"). Page 1/35

 Along with the netdev file foo.netdev, a "drop-in" directory foo.netdev.d/ may exist. All

 files with the suffix ".conf" from this directory will be merged in the alphanumeric order

 and parsed after the main file itself has been parsed. This is useful to alter or add

 configuration settings, without having to modify the main configuration file. Each drop-in

 file must have appropriate section headers.

 In addition to /etc/systemd/network, drop-in ".d" directories can be placed in

 /lib/systemd/network or /run/systemd/network directories. Drop-in files in /etc/ take

 precedence over those in /run/ which in turn take precedence over those in /lib/. Drop-in

 files under any of these directories take precedence over the main netdev file wherever

 located. (Of course, since /run/ is temporary and /usr/lib/ is for vendors, it is unlikely

 drop-ins should be used in either of those places.)

SUPPORTED NETDEV KINDS

 The following kinds of virtual network devices may be configured in .netdev files:

 Table 1. Supported kinds of virtual network devices

 ???

 ?Kind ? Description ?

 ???

 ?bond ? A bond device is an aggregation ?

 ? ? of all its slave devices. See ?

 ? ? Linux Ethernet Bonding Driver ?

 ? ? HOWTO[1] for details. ?

 ???

 ?bridge ? A bridge device is a software ?

 ? ? switch, and each of its slave ?

 ? ? devices and the bridge itself ?

 ? ? are ports of the switch. ?

 ???

 ?dummy ? A dummy device drops all packets ?

 ? ? sent to it. ?

 ???

 ?gre ? A Level 3 GRE tunnel over IPv4. ?

 ? ? See RFC 2784[2] for details. ?

 ??? Page 2/35

 ?gretap ? A Level 2 GRE tunnel over IPv4. ?

 ???

 ?erspan ? ERSPAN mirrors traffic on one or ?

 ? ? more source ports and delivers ?

 ? ? the mirrored traffic to one or ?

 ? ? more destination ports on ?

 ? ? another switch. The traffic is ?

 ? ? encapsulated in generic routing ?

 ? ? encapsulation (GRE) and is ?

 ? ? therefore routable across a ?

 ? ? layer 3 network between the ?

 ? ? source switch and the ?

 ? ? destination switch. ?

 ???

 ?ip6gre ? A Level 3 GRE tunnel over IPv6. ?

 ???

 ?ip6tnl ? An IPv4 or IPv6 tunnel over IPv6 ?

 ???

 ?ip6gretap ? A Level 2 GRE tunnel over IPv6. ?

 ???

 ?ipip ? An IPv4 over IPv4 tunnel. ?

 ???

 ?ipvlan ? An IPVLAN device is a stacked ?

 ? ? device which receives packets ?

 ? ? from its underlying device based ?

 ? ? on IP address filtering. ?

 ???

 ?ipvtap ? An IPVTAP device is a stacked ?

 ? ? device which receives packets ?

 ? ? from its underlying device based ?

 ? ? on IP address filtering and can ?

 ? ? be accessed using the tap user ?

 ? ? space interface. ? Page 3/35

 ???

 ?macvlan ? A macvlan device is a stacked ?

 ? ? device which receives packets ?

 ? ? from its underlying device based ?

 ? ? on MAC address filtering. ?

 ???

 ?macvtap ? A macvtap device is a stacked ?

 ? ? device which receives packets ?

 ? ? from its underlying device based ?

 ? ? on MAC address filtering. ?

 ???

 ?sit ? An IPv6 over IPv4 tunnel. ?

 ???

 ?tap ? A persistent Level 2 tunnel ?

 ? ? between a network device and a ?

 ? ? device node. ?

 ???

 ?tun ? A persistent Level 3 tunnel ?

 ? ? between a network device and a ?

 ? ? device node. ?

 ???

 ?veth ? An Ethernet tunnel between a ?

 ? ? pair of network devices. ?

 ???

 ?vlan ? A VLAN is a stacked device which ?

 ? ? receives packets from its ?

 ? ? underlying device based on VLAN ?

 ? ? tagging. See IEEE 802.1Q[3] for ?

 ? ? details. ?

 ???

 ?vti ? An IPv4 over IPSec tunnel. ?

 ???

 ?vti6 ? An IPv6 over IPSec tunnel. ? Page 4/35

 ???

 ?vxlan ? A virtual extensible LAN ?

 ? ? (vxlan), for connecting Cloud ?

 ? ? computing deployments. ?

 ???

 ?geneve ? A GEneric NEtwork Virtualization ?

 ? ? Encapsulation (GENEVE) netdev ?

 ? ? driver. ?

 ???

 ?l2tp ? A Layer 2 Tunneling Protocol ?

 ? ? (L2TP) is a tunneling protocol ?

 ? ? used to support virtual private ?

 ? ? networks (VPNs) or as part of ?

 ? ? the delivery of services by ?

 ? ? ISPs. It does not provide any ?

 ? ? encryption or confidentiality by ?

 ? ? itself ?

 ???

 ?macsec ? Media Access Control Security ?

 ? ? (MACsec) is an 802.1AE IEEE ?

 ? ? industry-standard security ?

 ? ? technology that provides secure ?

 ? ? communication for all traffic on ?

 ? ? Ethernet links. MACsec provides ?

 ? ? point-to-point security on ?

 ? ? Ethernet links between directly ?

 ? ? connected nodes and is capable ?

 ? ? of identifying and preventing ?

 ? ? most security threats. ?

 ???

 ?vrf ? A Virtual Routing and Forwarding ?

 ? ? (VRF[4]) interface to create ?

 ? ? separate routing and forwarding ? Page 5/35

 ? ? domains. ?

 ???

 ?vcan ? The virtual CAN driver (vcan). ?

 ? ? Similar to the network loopback ?

 ? ? devices, vcan offers a virtual ?

 ? ? local CAN interface. ?

 ???

 ?vxcan ? The virtual CAN tunnel driver ?

 ? ? (vxcan). Similar to the virtual ?

 ? ? ethernet driver veth, vxcan ?

 ? ? implements a local CAN traffic ?

 ? ? tunnel between two virtual CAN ?

 ? ? network devices. When creating a ?

 ? ? vxcan, two vxcan devices are ?

 ? ? created as pair. When one end ?

 ? ? receives the packet it appears ?

 ? ? on its pair and vice versa. The ?

 ? ? vxcan can be used for cross ?

 ? ? namespace communication. ?

 ???

 ?wireguard ? WireGuard Secure Network Tunnel. ?

 ???

 ?nlmon ? A Netlink monitor device. Use an ?

 ? ? nlmon device when you want to ?

 ? ? monitor system Netlink messages. ?

 ???

 ?fou ? Foo-over-UDP tunneling. ?

 ???

 ?xfrm ? A virtual tunnel interface like ?

 ? ? vti/vti6 but with several ?

 ? ? advantages. ?

 ???

 ?ifb ? The Intermediate Functional ? Page 6/35

 ? ? Block (ifb) pseudo network ?

 ? ? interface acts as a QoS ?

 ? ? concentrator for multiple ?

 ? ? different sources of traffic. ?

 ???

 ?bareudp ? Bare UDP tunnels provide a ?

 ? ? generic L3 encapsulation support ?

 ? ? for tunnelling different L3 ?

 ? ? protocols like MPLS, IP etc. ?

 ? ? inside of an UDP tunnel. ?

 ???

 ?batadv ? B.A.T.M.A.N. Advanced[5] is a ?

 ? ? routing protocol for multi-hop ?

 ? ? mobile ad-hoc networks which ?

 ? ? operates on layer 2. ?

 ???

[MATCH] SECTION OPTIONS

 A virtual network device is only created if the [Match] section matches the current

 environment, or if the section is empty. The following keys are accepted:

 Host=

 Matches against the hostname or machine ID of the host. See "ConditionHost=" in

 systemd.unit(5) for details. When prefixed with an exclamation mark ("!"), the result

 is negated. If an empty string is assigned, then previously assigned value is cleared.

 Virtualization=

 Checks whether the system is executed in a virtualized environment and optionally test

 whether it is a specific implementation. See "ConditionVirtualization=" in

 systemd.unit(5) for details. When prefixed with an exclamation mark ("!"), the result

 is negated. If an empty string is assigned, then previously assigned value is cleared.

 KernelCommandLine=

 Checks whether a specific kernel command line option is set. See

 "ConditionKernelCommandLine=" in systemd.unit(5) for details. When prefixed with an

 exclamation mark ("!"), the result is negated. If an empty string is assigned, then

 previously assigned value is cleared. Page 7/35

 KernelVersion=

 Checks whether the kernel version (as reported by uname -r) matches a certain

 expression. See "ConditionKernelVersion=" in systemd.unit(5) for details. When

 prefixed with an exclamation mark ("!"), the result is negated. If an empty string is

 assigned, then previously assigned value is cleared.

 Architecture=

 Checks whether the system is running on a specific architecture. See

 "ConditionArchitecture=" in systemd.unit(5) for details. When prefixed with an

 exclamation mark ("!"), the result is negated. If an empty string is assigned, then

 previously assigned value is cleared.

 Firmware=

 Checks whether the system is running on a machine with the specified firmware. See

 "ConditionFirmware=" in systemd.unit(5) for details. When prefixed with an exclamation

 mark ("!"), the result is negated. If an empty string is assigned, then previously

 assigned value is cleared.

[NETDEV] SECTION OPTIONS

 The [NetDev] section accepts the following keys:

 Description=

 A free-form description of the netdev.

 Name=

 The interface name used when creating the netdev. This setting is compulsory.

 Kind=

 The netdev kind. This setting is compulsory. See the "Supported netdev kinds" section

 for the valid keys.

 MTUBytes=

 The maximum transmission unit in bytes to set for the device. The usual suffixes K, M,

 G are supported and are understood to the base of 1024. For "tun" or "tap" devices,

 MTUBytes= setting is not currently supported in [NetDev] section. Please specify it in

 [Link] section of corresponding systemd.network(5) files.

 MACAddress=

 The MAC address to use for the device. For "tun" or "tap" devices, setting MACAddress=

 in the [NetDev] section is not supported. Please specify it in [Link] section of the

 corresponding systemd.network(5) file. If this option is not set, "vlan" devices Page 8/35

 inherit the MAC address of the physical interface. For other kind of netdevs, if this

 option is not set, then MAC address is generated based on the interface name and the

 machine-id(5).

[BRIDGE] SECTION OPTIONS

 The [Bridge] section only applies for netdevs of kind "bridge", and accepts the following

 keys:

 HelloTimeSec=

 HelloTimeSec specifies the number of seconds between two hello packets sent out by the

 root bridge and the designated bridges. Hello packets are used to communicate

 information about the topology throughout the entire bridged local area network.

 MaxAgeSec=

 MaxAgeSec specifies the number of seconds of maximum message age. If the last seen

 (received) hello packet is more than this number of seconds old, the bridge in

 question will start the takeover procedure in attempt to become the Root Bridge

 itself.

 ForwardDelaySec=

 ForwardDelaySec specifies the number of seconds spent in each of the Listening and

 Learning states before the Forwarding state is entered.

 AgeingTimeSec=

 This specifies the number of seconds a MAC Address will be kept in the forwarding

 database after having a packet received from this MAC Address.

 Priority=

 The priority of the bridge. An integer between 0 and 65535. A lower value means higher

 priority. The bridge having the lowest priority will be elected as root bridge.

 GroupForwardMask=

 A 16-bit bitmask represented as an integer which allows forwarding of link local

 frames with 802.1D reserved addresses (01:80:C2:00:00:0X). A logical AND is performed

 between the specified bitmask and the exponentiation of 2^X, the lower nibble of the

 last octet of the MAC address. For example, a value of 8 would allow forwarding of

 frames addressed to 01:80:C2:00:00:03 (802.1X PAE).

 DefaultPVID=

 This specifies the default port VLAN ID of a newly attached bridge port. Set this to

 an integer in the range 1...4094 or "none" to disable the PVID. Page 9/35

 MulticastQuerier=

 Takes a boolean. This setting controls the IFLA_BR_MCAST_QUERIER option in the kernel.

 If enabled, the kernel will send general ICMP queries from a zero source address. This

 feature should allow faster convergence on startup, but it causes some multicast-aware

 switches to misbehave and disrupt forwarding of multicast packets. When unset, the

 kernel's default will be used.

 MulticastSnooping=

 Takes a boolean. This setting controls the IFLA_BR_MCAST_SNOOPING option in the

 kernel. If enabled, IGMP snooping monitors the Internet Group Management Protocol

 (IGMP) traffic between hosts and multicast routers. When unset, the kernel's default

 will be used.

 VLANFiltering=

 Takes a boolean. This setting controls the IFLA_BR_VLAN_FILTERING option in the

 kernel. If enabled, the bridge will be started in VLAN-filtering mode. When unset, the

 kernel's default will be used.

 VLANProtocol=

 Allows setting the protocol used for VLAN filtering. Takes 802.1q or, 802.1ad, and

 defaults to unset and kernel's default is used.

 STP=

 Takes a boolean. This enables the bridge's Spanning Tree Protocol (STP). When unset,

 the kernel's default will be used.

 MulticastIGMPVersion=

 Allows changing bridge's multicast Internet Group Management Protocol (IGMP) version.

 Takes an integer 2 or 3. When unset, the kernel's default will be used.

[VLAN] SECTION OPTIONS

 The [VLAN] section only applies for netdevs of kind "vlan", and accepts the following key:

 Id=

 The VLAN ID to use. An integer in the range 0...4094. This setting is compulsory.

 Protocol=

 Allows setting the protocol used for the VLAN interface. Takes "802.1q" or, "802.1ad",

 and defaults to unset and kernel's default is used.

 GVRP=

 Takes a boolean. The Generic VLAN Registration Protocol (GVRP) is a protocol that Page 10/35

 allows automatic learning of VLANs on a network. When unset, the kernel's default will

 be used.

 MVRP=

 Takes a boolean. Multiple VLAN Registration Protocol (MVRP) formerly known as GARP

 VLAN Registration Protocol (GVRP) is a standards-based Layer 2 network protocol, for

 automatic configuration of VLAN information on switches. It was defined in the 802.1ak

 amendment to 802.1Q-2005. When unset, the kernel's default will be used.

 LooseBinding=

 Takes a boolean. The VLAN loose binding mode, in which only the operational state is

 passed from the parent to the associated VLANs, but the VLAN device state is not

 changed. When unset, the kernel's default will be used.

 ReorderHeader=

 Takes a boolean. When enabled, the VLAN reorder header is used and VLAN interfaces

 behave like physical interfaces. When unset, the kernel's default will be used.

 EgressQOSMaps=

 Defines a mapping of Linux internal packet priority (SO_PRIORITY) to VLAN header PCP

 field for outgoing frames. Takes a whitespace-separated list of unsigned integer pairs

 in the format "from"-"to", e.g., "21-7 45-5" ranges 1?4294967294. Note that "from"

 must be greater than or equal to "to". When unset, the kernel's default will be used.

 IngressQOSMaps=

 Defines a mapping of Linux internal packet priority (SO_PRIORITY) to VLAN header PCP

 field for incoming frames. Takes a whitespace-separated list of unsigned integer pairs

 in the format "from"-"to", e.g., "21-7 45-5" ranges 1?4294967294. Note that "from"

 must be greater than or equal to "to". When unset, the kernel's default will be used.

[MACVLAN] SECTION OPTIONS

 The [MACVLAN] section only applies for netdevs of kind "macvlan", and accepts the

 following key:

 Mode=

 The MACVLAN mode to use. The supported options are "private", "vepa", "bridge",

 "passthru", and "source".

 SourceMACAddress=

 A whitespace-separated list of remote hardware addresses allowed on the MACVLAN. This

 option only has an effect in source mode. Use full colon-, hyphen- or dot-delimited Page 11/35

 hexadecimal. This option may appear more than once, in which case the lists are

 merged. If the empty string is assigned to this option, the list of hardware addresses

 defined prior to this is reset. Defaults to unset.

 BroadcastMulticastQueueLength=

 Specifies the length of the receive queue for broadcast/multicast packets. An unsigned

 integer in the range 0...4294967294. Defaults to unset.

[MACVTAP] SECTION OPTIONS

 The [MACVTAP] section applies for netdevs of kind "macvtap" and accepts the same keys as

 [MACVLAN].

[IPVLAN] SECTION OPTIONS

 The [IPVLAN] section only applies for netdevs of kind "ipvlan", and accepts the following

 key:

 Mode=

 The IPVLAN mode to use. The supported options are "L2","L3" and "L3S".

 Flags=

 The IPVLAN flags to use. The supported options are "bridge","private" and "vepa".

[IPVTAP] SECTION OPTIONS

 The [IPVTAP] section only applies for netdevs of kind "ipvtap" and accepts the same keys

 as [IPVLAN].

[VXLAN] SECTION OPTIONS

 The [VXLAN] section only applies for netdevs of kind "vxlan", and accepts the following

 keys:

 VNI=

 The VXLAN Network Identifier (or VXLAN Segment ID). Takes a number in the range

 1...16777215.

 Remote=

 Configures destination IP address.

 Local=

 Configures local IP address.

 Group=

 Configures VXLAN multicast group IP address. All members of a VXLAN must use the same

 multicast group address.

 TOS= Page 12/35

 The Type Of Service byte value for a vxlan interface.

 TTL=

 A fixed Time To Live N on Virtual eXtensible Local Area Network packets. Takes

 "inherit" or a number in the range 0...255. 0 is a special value meaning inherit the

 inner protocol's TTL value. "inherit" means that it will inherit the outer protocol's

 TTL value.

 MacLearning=

 Takes a boolean. When true, enables dynamic MAC learning to discover remote MAC

 addresses.

 FDBAgeingSec=

 The lifetime of Forwarding Database entry learnt by the kernel, in seconds.

 MaximumFDBEntries=

 Configures maximum number of FDB entries.

 ReduceARPProxy=

 Takes a boolean. When true, bridge-connected VXLAN tunnel endpoint answers ARP

 requests from the local bridge on behalf of remote Distributed Overlay Virtual

 Ethernet (DVOE)[6] clients. Defaults to false.

 L2MissNotification=

 Takes a boolean. When true, enables netlink LLADDR miss notifications.

 L3MissNotification=

 Takes a boolean. When true, enables netlink IP address miss notifications.

 RouteShortCircuit=

 Takes a boolean. When true, route short circuiting is turned on.

 UDPChecksum=

 Takes a boolean. When true, transmitting UDP checksums when doing VXLAN/IPv4 is turned

 on.

 UDP6ZeroChecksumTx=

 Takes a boolean. When true, sending zero checksums in VXLAN/IPv6 is turned on.

 UDP6ZeroChecksumRx=

 Takes a boolean. When true, receiving zero checksums in VXLAN/IPv6 is turned on.

 RemoteChecksumTx=

 Takes a boolean. When true, remote transmit checksum offload of VXLAN is turned on.

 RemoteChecksumRx= Page 13/35

 Takes a boolean. When true, remote receive checksum offload in VXLAN is turned on.

 GroupPolicyExtension=

 Takes a boolean. When true, it enables Group Policy VXLAN extension security label

 mechanism across network peers based on VXLAN. For details about the Group Policy

 VXLAN, see the VXLAN Group Policy[7] document. Defaults to false.

 GenericProtocolExtension=

 Takes a boolean. When true, Generic Protocol Extension extends the existing VXLAN

 protocol to provide protocol typing, OAM, and versioning capabilities. For details

 about the VXLAN GPE Header, see the Generic Protocol Extension for VXLAN[8] document.

 If destination port is not specified and Generic Protocol Extension is set then

 default port of 4790 is used. Defaults to false.

 DestinationPort=

 Configures the default destination UDP port. If the destination port is not specified

 then Linux kernel default will be used. Set to 4789 to get the IANA assigned value.

 PortRange=

 Configures the source port range for the VXLAN. The kernel assigns the source UDP port

 based on the flow to help the receiver to do load balancing. When this option is not

 set, the normal range of local UDP ports is used.

 FlowLabel=

 Specifies the flow label to use in outgoing packets. The valid range is 0-1048575.

 IPDoNotFragment=

 Allows setting the IPv4 Do not Fragment (DF) bit in outgoing packets, or to inherit

 its value from the IPv4 inner header. Takes a boolean value, or "inherit". Set to

 "inherit" if the encapsulated protocol is IPv6. When unset, the kernel's default will

 be used.

[GENEVE] SECTION OPTIONS

 The [GENEVE] section only applies for netdevs of kind "geneve", and accepts the following

 keys:

 Id=

 Specifies the Virtual Network Identifier (VNI) to use, a number between 0 and

 16777215. This field is mandatory.

 Remote=

 Specifies the unicast destination IP address to use in outgoing packets. Page 14/35

 TOS=

 Specifies the TOS value to use in outgoing packets. Takes a number between 1 and 255.

 TTL=

 Accepts the same values as in the [VXLAN] section, except that when unset or set to 0,

 the kernel's default will be used, meaning that packet TTL will be set from

 /proc/sys/net/ipv4/ip_default_ttl.

 UDPChecksum=

 Takes a boolean. When true, specifies that UDP checksum is calculated for transmitted

 packets over IPv4.

 UDP6ZeroChecksumTx=

 Takes a boolean. When true, skip UDP checksum calculation for transmitted packets over

 IPv6.

 UDP6ZeroChecksumRx=

 Takes a boolean. When true, allows incoming UDP packets over IPv6 with zero checksum

 field.

 DestinationPort=

 Specifies destination port. Defaults to 6081. If not set or assigned the empty string,

 the default port of 6081 is used.

 FlowLabel=

 Specifies the flow label to use in outgoing packets.

 IPDoNotFragment=

 Accepts the same key as in [VXLAN] section.

 Independent=

 Takes a boolean. When true, the vxlan interface is created without any underlying

 network interface. Defaults to false, which means that a .network file that requests

 this tunnel using Tunnel= is required for the tunnel to be created.

[BAREUDP] SECTION OPTIONS

 The [BareUDP] section only applies for netdevs of kind "bareudp", and accepts the

 following keys:

 DestinationPort=

 Specifies the destination UDP port (in range 1...65535). This is mandatory.

 EtherType=

 Specifies the L3 protocol. Takes one of "ipv4", "ipv6", "mpls-uc" or "mpls-mc". This Page 15/35

 is mandatory.

[L2TP] SECTION OPTIONS

 The [L2TP] section only applies for netdevs of kind "l2tp", and accepts the following

 keys:

 TunnelId=

 Specifies the tunnel identifier. Takes an number in the range 1...4294967295. The

 value used must match the "PeerTunnelId=" value being used at the peer. This setting

 is compulsory.

 PeerTunnelId=

 Specifies the peer tunnel id. Takes a number in the range 1...4294967295. The value

 used must match the "TunnelId=" value being used at the peer. This setting is

 compulsory.

 Remote=

 Specifies the IP address of the remote peer. This setting is compulsory.

 Local=

 Specifies the IP address of the local interface. Takes an IP address, or the special

 values "auto", "static", or "dynamic". When an address is set, then the local

 interface must have the address. If "auto", then one of the addresses on the local

 interface is used. Similarly, if "static" or "dynamic" is set, then one of the static

 or dynamic addresses on the local interface is used. Defaults to "auto".

 EncapsulationType=

 Specifies the encapsulation type of the tunnel. Takes one of "udp" or "ip".

 UDPSourcePort=

 Specifies the UDP source port to be used for the tunnel. When UDP encapsulation is

 selected it's mandatory. Ignored when IP encapsulation is selected.

 UDPDestinationPort=

 Specifies destination port. When UDP encapsulation is selected it's mandatory. Ignored

 when IP encapsulation is selected.

 UDPChecksum=

 Takes a boolean. When true, specifies that UDP checksum is calculated for transmitted

 packets over IPv4.

 UDP6ZeroChecksumTx=

 Takes a boolean. When true, skip UDP checksum calculation for transmitted packets over Page 16/35

 IPv6.

 UDP6ZeroChecksumRx=

 Takes a boolean. When true, allows incoming UDP packets over IPv6 with zero checksum

 field.

[L2TPSESSION] SECTION OPTIONS

 The [L2TPSession] section only applies for netdevs of kind "l2tp", and accepts the

 following keys:

 Name=

 Specifies the name of the session. This setting is compulsory.

 SessionId=

 Specifies the session identifier. Takes an number in the range 1...4294967295. The

 value used must match the "SessionId=" value being used at the peer. This setting is

 compulsory.

 PeerSessionId=

 Specifies the peer session identifier. Takes an number in the range 1...4294967295.

 The value used must match the "PeerSessionId=" value being used at the peer. This

 setting is compulsory.

 Layer2SpecificHeader=

 Specifies layer2specific header type of the session. One of "none" or "default".

 Defaults to "default".

[MACSEC] SECTION OPTIONS

 The [MACsec] section only applies for network devices of kind "macsec", and accepts the

 following keys:

 Port=

 Specifies the port to be used for the MACsec transmit channel. The port is used to

 make secure channel identifier (SCI). Takes a value between 1 and 65535. Defaults to

 unset.

 Encrypt=

 Takes a boolean. When true, enable encryption. Defaults to unset.

[MACSECRECEIVECHANNEL] SECTION OPTIONS

 The [MACsecReceiveChannel] section only applies for network devices of kind "macsec", and

 accepts the following keys:

 Port= Page 17/35

 Specifies the port to be used for the MACsec receive channel. The port is used to make

 secure channel identifier (SCI). Takes a value between 1 and 65535. This option is

 compulsory, and is not set by default.

 MACAddress=

 Specifies the MAC address to be used for the MACsec receive channel. The MAC address

 used to make secure channel identifier (SCI). This setting is compulsory, and is not

 set by default.

[MACSECTRANSMITASSOCIATION] SECTION OPTIONS

 The [MACsecTransmitAssociation] section only applies for network devices of kind "macsec",

 and accepts the following keys:

 PacketNumber=

 Specifies the packet number to be used for replay protection and the construction of

 the initialization vector (along with the secure channel identifier [SCI]). Takes a

 value between 1-4,294,967,295. Defaults to unset.

 KeyId=

 Specifies the identification for the key. Takes a number between 0-255. This option is

 compulsory, and is not set by default.

 Key=

 Specifies the encryption key used in the transmission channel. The same key must be

 configured on the peer?s matching receive channel. This setting is compulsory, and is

 not set by default. Takes a 128-bit key encoded in a hexadecimal string, for example

 "dffafc8d7b9a43d5b9a3dfbbf6a30c16".

 KeyFile=

 Takes an absolute path to a file which contains a 128-bit key encoded in a hexadecimal

 string, which will be used in the transmission channel. When this option is specified,

 Key= is ignored. Note that the file must be readable by the user "systemd-network", so

 it should be, e.g., owned by "root:systemd-network" with a "0640" file mode. If the

 path refers to an AF_UNIX stream socket in the file system a connection is made to it

 and the key read from it.

 Activate=

 Takes a boolean. If enabled, then the security association is activated. Defaults to

 unset.

 UseForEncoding= Page 18/35

 Takes a boolean. If enabled, then the security association is used for encoding. Only

 one [MACsecTransmitAssociation] section can enable this option. When enabled,

 Activate=yes is implied. Defaults to unset.

[MACSECRECEIVEASSOCIATION] SECTION OPTIONS

 The [MACsecReceiveAssociation] section only applies for network devices of kind "macsec",

 and accepts the following keys:

 Port=

 Accepts the same key as in [MACsecReceiveChannel] section.

 MACAddress=

 Accepts the same key as in [MACsecReceiveChannel] section.

 PacketNumber=

 Accepts the same key as in [MACsecTransmitAssociation] section.

 KeyId=

 Accepts the same key as in [MACsecTransmitAssociation] section.

 Key=

 Accepts the same key as in [MACsecTransmitAssociation] section.

 KeyFile=

 Accepts the same key as in [MACsecTransmitAssociation] section.

 Activate=

 Accepts the same key as in [MACsecTransmitAssociation] section.

[TUNNEL] SECTION OPTIONS

 The [Tunnel] section only applies for netdevs of kind "ipip", "sit", "gre", "gretap",

 "ip6gre", "ip6gretap", "vti", "vti6", "ip6tnl", and "erspan" and accepts the following

 keys:

 Local=

 A static local address for tunneled packets. It must be an address on another

 interface of this host, or the special value "any".

 Remote=

 The remote endpoint of the tunnel. Takes an IP address or the special value "any".

 TOS=

 The Type Of Service byte value for a tunnel interface. For details about the TOS, see

 the Type of Service in the Internet Protocol Suite[9] document.

 TTL= Page 19/35

 A fixed Time To Live N on tunneled packets. N is a number in the range 1...255. 0 is a

 special value meaning that packets inherit the TTL value. The default value for IPv4

 tunnels is 0 (inherit). The default value for IPv6 tunnels is 64.

 DiscoverPathMTU=

 Takes a boolean. When true, enables Path MTU Discovery on the tunnel.

 IPv6FlowLabel=

 Configures the 20-bit flow label (see RFC 6437[10]) field in the IPv6 header (see RFC

 2460[11]), which is used by a node to label packets of a flow. It is only used for

 IPv6 tunnels. A flow label of zero is used to indicate packets that have not been

 labeled. It can be configured to a value in the range 0...0xFFFFF, or be set to

 "inherit", in which case the original flowlabel is used.

 CopyDSCP=

 Takes a boolean. When true, the Differentiated Service Code Point (DSCP) field will be

 copied to the inner header from outer header during the decapsulation of an IPv6

 tunnel packet. DSCP is a field in an IP packet that enables different levels of

 service to be assigned to network traffic. Defaults to "no".

 EncapsulationLimit=

 The Tunnel Encapsulation Limit option specifies how many additional levels of

 encapsulation are permitted to be prepended to the packet. For example, a Tunnel

 Encapsulation Limit option containing a limit value of zero means that a packet

 carrying that option may not enter another tunnel before exiting the current tunnel.

 (see RFC 2473[12]). The valid range is 0?255 and "none". Defaults to 4.

 Key=

 The Key= parameter specifies the same key to use in both directions (InputKey= and

 OutputKey=). The Key= is either a number or an IPv4 address-like dotted quad. It is

 used as mark-configured SAD/SPD entry as part of the lookup key (both in data and

 control path) in IP XFRM (framework used to implement IPsec protocol). See ip-xfrm ?

 transform configuration[13] for details. It is only used for VTI/VTI6, GRE, GRETAP,

 and ERSPAN tunnels.

 InputKey=

 The InputKey= parameter specifies the key to use for input. The format is same as

 Key=. It is only used for VTI/VTI6, GRE, GRETAP, and ERSPAN tunnels.

 OutputKey= Page 20/35

 The OutputKey= parameter specifies the key to use for output. The format is same as

 Key=. It is only used for VTI/VTI6, GRE, GRETAP, and ERSPAN tunnels.

 Mode=

 An "ip6tnl" tunnel can be in one of three modes "ip6ip6" for IPv6 over IPv6, "ipip6"

 for IPv4 over IPv6 or "any" for either.

 Independent=

 Takes a boolean. When false (the default), the tunnel is always created over some

 network device, and a .network file that requests this tunnel using Tunnel= is

 required for the tunnel to be created. When true, the tunnel is created independently

 of any network as "tunnel@NONE".

 AssignToLoopback=

 Takes a boolean. If set to "yes", the loopback interface "lo" is used as the

 underlying device of the tunnel interface. Defaults to "no".

 AllowLocalRemote=

 Takes a boolean. When true allows tunnel traffic on ip6tnl devices where the remote

 endpoint is a local host address. When unset, the kernel's default will be used.

 FooOverUDP=

 Takes a boolean. Specifies whether FooOverUDP= tunnel is to be configured. Defaults to

 false. This takes effects only for IPIP, SIT, GRE, and GRETAP tunnels. For more detail

 information see Foo over UDP[14]

 FOUDestinationPort=

 This setting specifies the UDP destination port for encapsulation. This field is

 mandatory when FooOverUDP=yes, and is not set by default.

 FOUSourcePort=

 This setting specifies the UDP source port for encapsulation. Defaults to 0 ? that is,

 the source port for packets is left to the network stack to decide.

 Encapsulation=

 Accepts the same key as in the [FooOverUDP] section.

 IPv6RapidDeploymentPrefix=

 Reconfigure the tunnel for IPv6 Rapid Deployment[15], also known as 6rd. The value is

 an ISP-specific IPv6 prefix with a non-zero length. Only applicable to SIT tunnels.

 ISATAP=

 Takes a boolean. If set, configures the tunnel as Intra-Site Automatic Tunnel Page 21/35

 Addressing Protocol (ISATAP) tunnel. Only applicable to SIT tunnels. When unset, the

 kernel's default will be used.

 SerializeTunneledPackets=

 Takes a boolean. If set to yes, then packets are serialized. Only applies for GRE,

 GRETAP, and ERSPAN tunnels. When unset, the kernel's default will be used.

 ERSPANIndex=

 Specifies the ERSPAN index field for the interface, an integer in the range

 1...1048575 associated with the ERSPAN traffic's source port and direction. This field

 is mandatory.

[FOOOVERUDP] SECTION OPTIONS

 The [FooOverUDP] section only applies for netdevs of kind "fou" and accepts the following

 keys:

 Encapsulation=

 Specifies the encapsulation mechanism used to store networking packets of various

 protocols inside the UDP packets. Supports the following values: "FooOverUDP" provides

 the simplest no-frills model of UDP encapsulation, it simply encapsulates packets

 directly in the UDP payload. "GenericUDPEncapsulation" is a generic and extensible

 encapsulation, it allows encapsulation of packets for any IP protocol and optional

 data as part of the encapsulation. For more detailed information see Generic UDP

 Encapsulation[16]. Defaults to "FooOverUDP".

 Port=

 Specifies the port number where the encapsulated packets will arrive. Those packets

 will be removed and manually fed back into the network stack with the encapsulation

 removed to be sent to the real destination. This option is mandatory.

 PeerPort=

 Specifies the peer port number. Defaults to unset. Note that when peer port is set

 "Peer=" address is mandatory.

 Protocol=

 The Protocol= specifies the protocol number of the packets arriving at the UDP port.

 When Encapsulation=FooOverUDP, this field is mandatory and is not set by default.

 Takes an IP protocol name such as "gre" or "ipip", or an integer within the range

 1...255. When Encapsulation=GenericUDPEncapsulation, this must not be specified.

 Peer= Page 22/35

 Configures peer IP address. Note that when peer address is set "PeerPort=" is

 mandatory.

 Local=

 Configures local IP address.

[PEER] SECTION OPTIONS

 The [Peer] section only applies for netdevs of kind "veth" and accepts the following keys:

 Name=

 The interface name used when creating the netdev. This setting is compulsory.

 MACAddress=

 The peer MACAddress, if not set, it is generated in the same way as the MAC address of

 the main interface.

[VXCAN] SECTION OPTIONS

 The [VXCAN] section only applies for netdevs of kind "vxcan" and accepts the following

 key:

 Peer=

 The peer interface name used when creating the netdev. This setting is compulsory.

[TUN] SECTION OPTIONS

 The [Tun] section only applies for netdevs of kind "tun", and accepts the following keys:

 MultiQueue=

 Takes a boolean. Configures whether to use multiple file descriptors (queues) to

 parallelize packets sending and receiving. Defaults to "no".

 PacketInfo=

 Takes a boolean. Configures whether packets should be prepended with four extra bytes

 (two flag bytes and two protocol bytes). If disabled, it indicates that the packets

 will be pure IP packets. Defaults to "no".

 VNetHeader=

 Takes a boolean. Configures IFF_VNET_HDR flag for a tun or tap device. It allows

 sending and receiving larger Generic Segmentation Offload (GSO) packets. This may

 increase throughput significantly. Defaults to "no".

 User=

 User to grant access to the /dev/net/tun device.

 Group=

 Group to grant access to the /dev/net/tun device. Page 23/35

[TAP] SECTION OPTIONS

 The [Tap] section only applies for netdevs of kind "tap", and accepts the same keys as the

 [Tun] section.

[WIREGUARD] SECTION OPTIONS

 The [WireGuard] section accepts the following keys:

 PrivateKey=

 The Base64 encoded private key for the interface. It can be generated using the wg

 genkey command (see wg(8)). This option or PrivateKeyFile= is mandatory to use

 WireGuard. Note that because this information is secret, you may want to set the

 permissions of the .netdev file to be owned by "root:systemd-network" with a "0640"

 file mode.

 PrivateKeyFile=

 Takes an absolute path to a file which contains the Base64 encoded private key for the

 interface. When this option is specified, then PrivateKey= is ignored. Note that the

 file must be readable by the user "systemd-network", so it should be, e.g., owned by

 "root:systemd-network" with a "0640" file mode. If the path refers to an AF_UNIX

 stream socket in the file system a connection is made to it and the key read from it.

 ListenPort=

 Sets UDP port for listening. Takes either value between 1 and 65535 or "auto". If

 "auto" is specified, the port is automatically generated based on interface name.

 Defaults to "auto".

 FirewallMark=

 Sets a firewall mark on outgoing WireGuard packets from this interface. Takes a number

 between 1 and 4294967295.

[WIREGUARDPEER] SECTION OPTIONS

 The [WireGuardPeer] section accepts the following keys:

 PublicKey=

 Sets a Base64 encoded public key calculated by wg pubkey (see wg(8)) from a private

 key, and usually transmitted out of band to the author of the configuration file. This

 option is mandatory for this section.

 PresharedKey=

 Optional preshared key for the interface. It can be generated by the wg genpsk

 command. This option adds an additional layer of symmetric-key cryptography to be Page 24/35

 mixed into the already existing public-key cryptography, for post-quantum resistance.

 Note that because this information is secret, you may want to set the permissions of

 the .netdev file to be owned by "root:systemd-network" with a "0640" file mode.

 PresharedKeyFile=

 Takes an absolute path to a file which contains the Base64 encoded preshared key for

 the peer. When this option is specified, then PresharedKey= is ignored. Note that the

 file must be readable by the user "systemd-network", so it should be, e.g., owned by

 "root:systemd-network" with a "0640" file mode. If the path refers to an AF_UNIX

 stream socket in the file system a connection is made to it and the key read from it.

 AllowedIPs=

 Sets a comma-separated list of IP (v4 or v6) addresses with CIDR masks from which this

 peer is allowed to send incoming traffic and to which outgoing traffic for this peer

 is directed.

 The catch-all 0.0.0.0/0 may be specified for matching all IPv4 addresses, and ::/0 may

 be specified for matching all IPv6 addresses.

 Note that this only affects routing inside the network interface itself, i.e. the

 packets that pass through the tunnel itself. To cause packets to be sent via the

 tunnel in the first place, an appropriate route needs to be added as well ? either in

 the "[Routes]" section on the ".network" matching the wireguard interface, or

 externally to systemd-networkd.

 Endpoint=

 Sets an endpoint IP address or hostname, followed by a colon, and then a port number.

 This endpoint will be updated automatically once to the most recent source IP address

 and port of correctly authenticated packets from the peer at configuration time.

 PersistentKeepalive=

 Sets a seconds interval, between 1 and 65535 inclusive, of how often to send an

 authenticated empty packet to the peer for the purpose of keeping a stateful firewall

 or NAT mapping valid persistently. For example, if the interface very rarely sends

 traffic, but it might at anytime receive traffic from a peer, and it is behind NAT,

 the interface might benefit from having a persistent keepalive interval of 25 seconds.

 If set to 0 or "off", this option is disabled. By default or when unspecified, this

 option is off. Most users will not need this.

[BOND] SECTION OPTIONS Page 25/35

 The [Bond] section accepts the following key:

 Mode=

 Specifies one of the bonding policies. The default is "balance-rr" (round robin).

 Possible values are "balance-rr", "active-backup", "balance-xor", "broadcast",

 "802.3ad", "balance-tlb", and "balance-alb".

 TransmitHashPolicy=

 Selects the transmit hash policy to use for slave selection in balance-xor, 802.3ad,

 and tlb modes. Possible values are "layer2", "layer3+4", "layer2+3", "encap2+3", and

 "encap3+4".

 LACPTransmitRate=

 Specifies the rate with which link partner transmits Link Aggregation Control Protocol

 Data Unit packets in 802.3ad mode. Possible values are "slow", which requests partner

 to transmit LACPDUs every 30 seconds, and "fast", which requests partner to transmit

 LACPDUs every second. The default value is "slow".

 MIIMonitorSec=

 Specifies the frequency that Media Independent Interface link monitoring will occur. A

 value of zero disables MII link monitoring. This value is rounded down to the nearest

 millisecond. The default value is 0.

 UpDelaySec=

 Specifies the delay before a link is enabled after a link up status has been detected.

 This value is rounded down to a multiple of MIIMonitorSec. The default value is 0.

 DownDelaySec=

 Specifies the delay before a link is disabled after a link down status has been

 detected. This value is rounded down to a multiple of MIIMonitorSec. The default value

 is 0.

 LearnPacketIntervalSec=

 Specifies the number of seconds between instances where the bonding driver sends

 learning packets to each slave peer switch. The valid range is 1?0x7fffffff; the

 default value is 1. This option has an effect only for the balance-tlb and balance-alb

 modes.

 AdSelect=

 Specifies the 802.3ad aggregation selection logic to use. Possible values are

 "stable", "bandwidth" and "count". Page 26/35

 AdActorSystemPriority=

 Specifies the 802.3ad actor system priority. Takes a number in the range 1...65535.

 AdUserPortKey=

 Specifies the 802.3ad user defined portion of the port key. Takes a number in the

 range 0...1023.

 AdActorSystem=

 Specifies the 802.3ad system MAC address. This cannot be a null or multicast address.

 FailOverMACPolicy=

 Specifies whether the active-backup mode should set all slaves to the same MAC address

 at the time of enslavement or, when enabled, to perform special handling of the bond's

 MAC address in accordance with the selected policy. The default policy is none.

 Possible values are "none", "active" and "follow".

 ARPValidate=

 Specifies whether or not ARP probes and replies should be validated in any mode that

 supports ARP monitoring, or whether non-ARP traffic should be filtered (disregarded)

 for link monitoring purposes. Possible values are "none", "active", "backup" and

 "all".

 ARPIntervalSec=

 Specifies the ARP link monitoring frequency. A value of 0 disables ARP monitoring. The

 default value is 0, and the default unit seconds.

 ARPIPTargets=

 Specifies the IP addresses to use as ARP monitoring peers when ARPIntervalSec is

 greater than 0. These are the targets of the ARP request sent to determine the health

 of the link to the targets. Specify these values in IPv4 dotted decimal format. At

 least one IP address must be given for ARP monitoring to function. The maximum number

 of targets that can be specified is 16. The default value is no IP addresses.

 ARPAllTargets=

 Specifies the quantity of ARPIPTargets that must be reachable in order for the ARP

 monitor to consider a slave as being up. This option affects only active-backup mode

 for slaves with ARPValidate enabled. Possible values are "any" and "all".

 PrimaryReselectPolicy=

 Specifies the reselection policy for the primary slave. This affects how the primary

 slave is chosen to become the active slave when failure of the active slave or Page 27/35

 recovery of the primary slave occurs. This option is designed to prevent flip-flopping

 between the primary slave and other slaves. Possible values are "always", "better" and

 "failure".

 ResendIGMP=

 Specifies the number of IGMP membership reports to be issued after a failover event.

 One membership report is issued immediately after the failover, subsequent packets are

 sent in each 200ms interval. The valid range is 0?255. Defaults to 1. A value of 0

 prevents the IGMP membership report from being issued in response to the failover

 event.

 PacketsPerSlave=

 Specify the number of packets to transmit through a slave before moving to the next

 one. When set to 0, then a slave is chosen at random. The valid range is 0?65535.

 Defaults to 1. This option only has effect when in balance-rr mode.

 GratuitousARP=

 Specify the number of peer notifications (gratuitous ARPs and unsolicited IPv6

 Neighbor Advertisements) to be issued after a failover event. As soon as the link is

 up on the new slave, a peer notification is sent on the bonding device and each VLAN

 sub-device. This is repeated at each link monitor interval (ARPIntervalSec or

 MIIMonitorSec, whichever is active) if the number is greater than 1. The valid range

 is 0?255. The default value is 1. These options affect only the active-backup mode.

 AllSlavesActive=

 Takes a boolean. Specifies that duplicate frames (received on inactive ports) should

 be dropped when false, or delivered when true. Normally, bonding will drop duplicate

 frames (received on inactive ports), which is desirable for most users. But there are

 some times it is nice to allow duplicate frames to be delivered. The default value is

 false (drop duplicate frames received on inactive ports).

 DynamicTransmitLoadBalancing=

 Takes a boolean. Specifies if dynamic shuffling of flows is enabled. Applies only for

 balance-tlb mode. Defaults to unset.

 MinLinks=

 Specifies the minimum number of links that must be active before asserting carrier.

 The default value is 0.

 For more detail information see Linux Ethernet Bonding Driver HOWTO[1] Page 28/35

[XFRM] SECTION OPTIONS

 The [Xfrm] section accepts the following keys:

 InterfaceId=

 Sets the ID/key of the xfrm interface which needs to be associated with a SA/policy.

 Can be decimal or hexadecimal, valid range is 1-0xffffffff. This is mandatory.

 Independent=

 Takes a boolean. If false (the default), the xfrm interface must have an underlying

 device which can be used for hardware offloading.

 For more detail information see Virtual XFRM Interfaces[17].

[VRF] SECTION OPTIONS

 The [VRF] section only applies for netdevs of kind "vrf" and accepts the following key:

 Table=

 The numeric routing table identifier. This setting is compulsory.

[BATMANADVANCED] SECTION OPTIONS

 The [BatmanAdvanced] section only applies for netdevs of kind "batadv" and accepts the

 following keys:

 GatewayMode=

 Takes one of "off", "server", or "client". A batman-adv node can either run in server

 mode (sharing its internet connection with the mesh) or in client mode (searching for

 the most suitable internet connection in the mesh) or having the gateway support

 turned off entirely (which is the default setting).

 Aggregation=

 Takes a boolean value. Enables or disables aggregation of originator messages.

 Defaults to true.

 BridgeLoopAvoidance=

 Takes a boolean value. Enables or disables avoidance of loops on bridges. Defaults to

 true.

 DistributedArpTable=

 Takes a boolean value. Enables or disables the distributed ARP table. Defaults to

 true.

 Fragmentation=

 Takes a boolean value. Enables or disables fragmentation. Defaults to true.

 HopPenalty= Page 29/35

 The hop penalty setting allows to modify batctl(8) preference for multihop routes vs.

 short routes. This integer value is applied to the TQ (Transmit Quality) of each

 forwarded OGM (Originator Message), thereby propagating the cost of an extra hop (the

 packet has to be received and retransmitted which costs airtime). A higher hop penalty

 will make it more unlikely that other nodes will choose this node as intermediate hop

 towards any given destination. The default hop penalty of '15' is a reasonable value

 for most setups and probably does not need to be changed. However, mobile nodes could

 choose a value of 255 (maximum value) to avoid being chosen as a router by other

 nodes. The minimum value is 0.

 OriginatorIntervalSec=

 The value specifies the interval in seconds, unless another time unit is specified in

 which batman-adv floods the network with its protocol information. See systemd.time(7)

 for more information.

 GatewayBandwidthDown=

 If the node is a server, this parameter is used to inform other nodes in the network

 about this node's internet connection download bandwidth in bits per second. Just

 enter any number suffixed with K, M, G or T (base 1000) and the batman-adv module will

 propagate the entered value in the mesh.

 GatewayBandwidthUp=

 If the node is a server, this parameter is used to inform other nodes in the network

 about this node's internet connection upload bandwidth in bits per second. Just enter

 any number suffixed with K, M, G or T (base 1000) and the batman-adv module will

 propagate the entered value in the mesh.

 RoutingAlgorithm=

 This can be either "batman-v" or "batman-iv" and describes which routing_algo of

 batctl(8) to use. The algorithm cannot be changed after interface creation. Defaults

 to "batman-v".

EXAMPLES

 Example 1. /etc/systemd/network/25-bridge.netdev

 [NetDev]

 Name=bridge0

 Kind=bridge

 Example 2. /etc/systemd/network/25-vlan1.netdev Page 30/35

 [Match]

 Virtualization=no

 [NetDev]

 Name=vlan1

 Kind=vlan

 [VLAN]

 Id=1

 Example 3. /etc/systemd/network/25-ipip.netdev

 [NetDev]

 Name=ipip-tun

 Kind=ipip

 MTUBytes=1480

 [Tunnel]

 Local=192.168.223.238

 Remote=192.169.224.239

 TTL=64

 Example 4. /etc/systemd/network/1-fou-tunnel.netdev

 [NetDev]

 Name=fou-tun

 Kind=fou

 [FooOverUDP]

 Port=5555

 Protocol=4

 Example 5. /etc/systemd/network/25-fou-ipip.netdev

 [NetDev]

 Name=ipip-tun

 Kind=ipip

 [Tunnel]

 Independent=yes

 Local=10.65.208.212

 Remote=10.65.208.211

 FooOverUDP=yes

 FOUDestinationPort=5555 Page 31/35

 Example 6. /etc/systemd/network/25-tap.netdev

 [NetDev]

 Name=tap-test

 Kind=tap

 [Tap]

 MultiQueue=yes

 PacketInfo=yes

 Example 7. /etc/systemd/network/25-sit.netdev

 [NetDev]

 Name=sit-tun

 Kind=sit

 MTUBytes=1480

 [Tunnel]

 Local=10.65.223.238

 Remote=10.65.223.239

 Example 8. /etc/systemd/network/25-6rd.netdev

 [NetDev]

 Name=6rd-tun

 Kind=sit

 MTUBytes=1480

 [Tunnel]

 Local=10.65.223.238

 IPv6RapidDeploymentPrefix=2602::/24

 Example 9. /etc/systemd/network/25-gre.netdev

 [NetDev]

 Name=gre-tun

 Kind=gre

 MTUBytes=1480

 [Tunnel]

 Local=10.65.223.238

 Remote=10.65.223.239

 Example 10. /etc/systemd/network/25-ip6gre.netdev

 [NetDev] Page 32/35

 Name=ip6gre-tun

 Kind=ip6gre

 [Tunnel]

 Key=123

 Example 11. /etc/systemd/network/25-vti.netdev

 [NetDev]

 Name=vti-tun

 Kind=vti

 MTUBytes=1480

 [Tunnel]

 Local=10.65.223.238

 Remote=10.65.223.239

 Example 12. /etc/systemd/network/25-veth.netdev

 [NetDev]

 Name=veth-test

 Kind=veth

 [Peer]

 Name=veth-peer

 Example 13. /etc/systemd/network/25-bond.netdev

 [NetDev]

 Name=bond1

 Kind=bond

 [Bond]

 Mode=802.3ad

 TransmitHashPolicy=layer3+4

 MIIMonitorSec=1s

 LACPTransmitRate=fast

 Example 14. /etc/systemd/network/25-dummy.netdev

 [NetDev]

 Name=dummy-test

 Kind=dummy

 MACAddress=12:34:56:78:9a:bc

 Example 15. /etc/systemd/network/25-vrf.netdev Page 33/35

 Create a VRF interface with table 42.

 [NetDev]

 Name=vrf-test

 Kind=vrf

 [VRF]

 Table=42

 Example 16. /etc/systemd/network/25-macvtap.netdev

 Create a MacVTap device.

 [NetDev]

 Name=macvtap-test

 Kind=macvtap

 Example 17. /etc/systemd/network/25-wireguard.netdev

 [NetDev]

 Name=wg0

 Kind=wireguard

 [WireGuard]

 PrivateKey=EEGlnEPYJV//kbvvIqxKkQwOiS+UENyPncC4bF46ong=

 ListenPort=51820

 [WireGuardPeer]

 PublicKey=RDf+LSpeEre7YEIKaxg+wbpsNV7du+ktR99uBEtIiCA=

 AllowedIPs=fd31:bf08:57cb::/48,192.168.26.0/24

 Endpoint=wireguard.example.com:51820

 Example 18. /etc/systemd/network/27-xfrm.netdev

 [NetDev]

 Name=xfrm0

 Kind=xfrm

 [Xfrm]

 Independent=yes

SEE ALSO

 systemd(1), systemd-networkd(8), systemd.link(5), systemd.network(5)

NOTES

 1. Linux Ethernet Bonding Driver HOWTO

 https://www.kernel.org/doc/Documentation/networking/bonding.txt Page 34/35

 2. RFC 2784

 https://tools.ietf.org/html/rfc2784

 3. IEEE 802.1Q

 http://www.ieee802.org/1/pages/802.1Q.html

 4. VRF

 https://www.kernel.org/doc/Documentation/networking/vrf.txt

 5. B.A.T.M.A.N. Advanced

 https://www.open-mesh.org/projects/open-mesh/wiki

 6. (DVOE)

 https://en.wikipedia.org/wiki/Distributed_Overlay_Virtual_Ethernet

 7. VXLAN Group Policy

 https://tools.ietf.org/html/draft-smith-vxlan-group-policy

 8. Generic Protocol Extension for VXLAN

 https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe-07

 9. Type of Service in the Internet Protocol Suite

 http://tools.ietf.org/html/rfc1349

 10. RFC 6437

 https://tools.ietf.org/html/rfc6437

 11. RFC 2460

 https://tools.ietf.org/html/rfc2460

 12. RFC 2473

 https://tools.ietf.org/html/rfc2473#section-4.1.1

 13. ip-xfrm ? transform configuration

 http://man7.org/linux/man-pages/man8/ip-xfrm.8.html

 14. Foo over UDP

 https://lwn.net/Articles/614348

 15. IPv6 Rapid Deployment

 https://tools.ietf.org/html/rfc5569

 16. Generic UDP Encapsulation

 https://lwn.net/Articles/615044

 17. Virtual XFRM Interfaces

 https://lwn.net/Articles/757391

systemd 249 SYSTEMD.NETDEV(5) Page 35/35

