
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd.generator.7'

$ man systemd.generator.7

SYSTEMD.GENERATOR(7) systemd.generator SYSTEMD.GENERATOR(7)

NAME

 systemd.generator - systemd unit generators

SYNOPSIS

 /path/to/generator normal-dir early-dir late-dir

 /run/systemd/system-generators/*

 /etc/systemd/system-generators/*

 /usr/local/lib/systemd/system-generators/*

 /lib/systemd/system-generators/*

 /run/systemd/user-generators/*

 /etc/systemd/user-generators/*

 /usr/local/lib/systemd/user-generators/*

 /usr/lib/systemd/user-generators/*

DESCRIPTION

 Generators are small executables placed in /lib/systemd/system-generators/ and other

 directories listed above. systemd(1) will execute these binaries very early at bootup and

 at configuration reload time ? before unit files are loaded. Their main purpose is to

 convert configuration that is not native to the service manager into dynamically generated

 unit files, symlinks or unit file drop-ins, so that they can extend the unit file

 hierarchy the service manager subsequently loads and operates on.

 Each generator is called with three directory paths that are to be used for generator

 output. In these three directories, generators may dynamically generate unit files

 (regular ones, instances, as well as templates), unit file .d/ drop-ins, and create Page 1/5

 symbolic links to unit files to add additional dependencies, create aliases, or

 instantiate existing templates. Those directories are included in the unit load path of

 systemd(1), allowing generated configuration to extend or override existing definitions.

 Directory paths for generator output differ by priority: .../generator.early has priority

 higher than the admin configuration in /etc/, while .../generator has lower priority than

 /etc/ but higher than vendor configuration in /usr/, and .../generator.late has priority

 lower than all other configuration. See the next section and the discussion of unit load

 paths and unit overriding in systemd.unit(5).

 Generators are loaded from a set of paths determined during compilation, as listed above.

 System and user generators are loaded from directories with names ending in

 system-generators/ and user-generators/, respectively. Generators found in directories

 listed earlier override the ones with the same name in directories lower in the list. A

 symlink to /dev/null or an empty file can be used to mask a generator, thereby preventing

 it from running. Please note that the order of the two directories with the highest

 priority is reversed with respect to the unit load path, and generators in /run/ overwrite

 those in /etc/.

 After installing new generators or updating the configuration, systemctl daemon-reload may

 be executed. This will delete the previous configuration created by generators, re-run all

 generators, and cause systemd to reload units from disk. See systemctl(1) for more

 information.

OUTPUT DIRECTORIES

 Generators are invoked with three arguments: paths to directories where generators can

 place their generated unit files or symlinks. By default those paths are runtime

 directories that are included in the search path of systemd, but a generator may be called

 with different paths for debugging purposes.

 1. normal-dir

 In normal use this is /run/systemd/generator in case of the system generators and

 $XDG_RUNTIME_DIR/generator in case of the user generators. Unit files placed in this

 directory take precedence over vendor unit configuration but not over native

 user/administrator unit configuration.

 2. early-dir

 In normal use this is /run/systemd/generator.early in case of the system generators

 and $XDG_RUNTIME_DIR/generator.early in case of the user generators. Unit files placed Page 2/5

 in this directory override unit files in /usr/, /run/ and /etc/. This means that unit

 files placed in this directory take precedence over all normal configuration, both

 vendor and user/administrator.

 3. late-dir

 In normal use this is /run/systemd/generator.late in case of the system generators and

 $XDG_RUNTIME_DIR/generator.late in case of the user generators. This directory may be

 used to extend the unit file tree without overriding any other unit files. Any native

 configuration files supplied by the vendor or user/administrator take precedence.

NOTES ABOUT WRITING GENERATORS

 ? All generators are executed in parallel. That means all executables are started at the

 very same time and need to be able to cope with this parallelism.

 ? Generators are run very early at boot and cannot rely on any external services. They

 may not talk to any other process. That includes simple things such as logging to

 syslog(3), or systemd itself (this means: no systemctl(1))! Non-essential file systems

 like /var/ and /home/ are mounted after generators have run. Generators can however

 rely on the most basic kernel functionality to be available, as well as mounted /sys/,

 /proc/, /dev/, /usr/ and /run/ file systems.

 ? Units written by generators are removed when the configuration is reloaded. That means

 the lifetime of the generated units is closely bound to the reload cycles of systemd

 itself.

 ? Generators should only be used to generate unit files, .d/*.conf drop-ins for them and

 symlinks to them, not any other kind of non-unit related configuration. Due to the

 lifecycle logic mentioned above, generators are not a good fit to generate dynamic

 configuration for other services. If you need to generate dynamic configuration for

 other services, do so in normal services you order before the service in question.

 Note that using the StandardInputData=/StandardInputText= settings of service unit

 files (see systemd.exec(5)), it is possible to make arbitrary input data (including

 daemon-specific configuration) part of the unit definitions, which often might be

 sufficient to embed data or configuration for other programs into unit files in a

 native fashion.

 ? Since syslog(3) is not available (see above), log messages have to be written to

 /dev/kmsg instead.

 ? The generator should always include its own name in a comment at the top of the Page 3/5

 generated file, so that the user can easily figure out which component created or

 amended a particular unit.

 The SourcePath= directive should be used in generated files to specify the source

 configuration file they are generated from. This makes things more easily understood

 by the user and also has the benefit that systemd can warn the user about

 configuration files that changed on disk but have not been read yet by systemd. The

 SourcePath= value does not have to be a file in a physical filesystem. For example, in

 the common case of the generator looking at the kernel command line,

 SourcePath=/proc/cmdline should be used.

 ? Generators may write out dynamic unit files or just hook unit files into other units

 with the usual .wants/ or .requires/ symlinks. Often, it is nicer to simply

 instantiate a template unit file from /usr/ with a generator instead of writing out

 entirely dynamic unit files. Of course, this works only if a single parameter is to be

 used.

 ? If you are careful, you can implement generators in shell scripts. We do recommend C

 code however, since generators are executed synchronously and hence delay the entire

 boot if they are slow.

 ? Regarding overriding semantics: there are two rules we try to follow when thinking

 about the overriding semantics:

 1. User configuration should override vendor configuration. This (mostly) means that

 stuff from /etc/ should override stuff from /usr/.

 2. Native configuration should override non-native configuration. This (mostly) means

 that stuff you generate should never override native unit files for the same

 purpose.

 Of these two rules the first rule is probably the more important one and breaks the

 second one sometimes. Hence, when deciding whether to use argv[1], argv[2], or

 argv[3], your default choice should probably be argv[1].

 ? Instead of heading off now and writing all kind of generators for legacy configuration

 file formats, please think twice! It is often a better idea to just deprecate old

 stuff instead of keeping it artificially alive.

EXAMPLES

 Example 1. systemd-fstab-generator

 systemd-fstab-generator(8) converts /etc/fstab into native mount units. It uses argv[1] as Page 4/5

 location to place the generated unit files in order to allow the user to override

 /etc/fstab with their own native unit files, but also to ensure that /etc/fstab overrides

 any vendor default from /usr/.

 After editing /etc/fstab, the user should invoke systemctl daemon-reload. This will re-run

 all generators and cause systemd to reload units from disk. To actually mount new

 directories added to fstab, systemctl start /path/to/mountpoint or systemctl start

 local-fs.target may be used.

 Example 2. systemd-system-update-generator

 systemd-system-update-generator(8) temporarily redirects default.target to

 system-update.target, if a system update is scheduled. Since this needs to override the

 default user configuration for default.target, it uses argv[2]. For details about this

 logic, see systemd.offline-updates(7).

 Example 3. Debugging a generator

 dir=$(mktemp -d)

 SYSTEMD_LOG_LEVEL=debug /lib/systemd/system-generators/systemd-fstab-generator \

 "$dir" "$dir" "$dir"

 find $dir

SEE ALSO

 systemd(1), systemd-cryptsetup-generator(8), systemd-debug-generator(8), systemd-fstab-

 generator(8), fstab(5), systemd-getty-generator(8), systemd-gpt-auto-generator(8),

 systemd-hibernate-resume-generator(8), systemd-rc-local-generator(8), systemd-system-

 update-generator(8), systemd-sysv-generator(8), systemd-xdg-autostart-generator(8),

 systemd.unit(5), systemctl(1), systemd.environment-generator(7)

systemd 249 SYSTEMD.GENERATOR(7)

Page 5/5

