
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd.environment-generator.7'

$ man systemd.environment-generator.7

SYSTEMD.ENVIRONMENT-GENERATOR(7) systemd.environment-generator

SYSTEMD.ENVIRONMENT-GENERATOR(7)

NAME

 systemd.environment-generator - systemd environment file generators

SYNOPSIS

 /lib/systemd/system-environment-generators/some-generator

 /usr/lib/systemd/user-environment-generators/some-generator

 /run/systemd/system-environment-generators/*

 /etc/systemd/system-environment-generators/*

 /usr/local/lib/systemd/system-environment-generators/*

 /lib/systemd/system-environment-generators/*

 /run/systemd/user-environment-generators/*

 /etc/systemd/user-environment-generators/*

 /usr/local/lib/systemd/user-environment-generators/*

 /usr/lib/systemd/user-environment-generators/*

DESCRIPTION

 Generators are small executables that live in /lib/systemd/system-environment-generators/

 and other directories listed above. systemd(1) will execute those binaries very early at

 the startup of each manager and at configuration reload time, before running the

 generators described in systemd.generator(7) and before starting any units. Environment

 generators can override the environment that the manager exports to services and other

 processes.

 Generators are loaded from a set of paths determined during compilation, as listed above. Page 1/4

 System and user environment generators are loaded from directories with names ending in

 system-environment-generators/ and user-environment-generators/, respectively. Generators

 found in directories listed earlier override the ones with the same name in directories

 lower in the list. A symlink to /dev/null or an empty file can be used to mask a

 generator, thereby preventing it from running. Please note that the order of the two

 directories with the highest priority is reversed with respect to the unit load path, and

 generators in /run/ overwrite those in /etc/.

 After installing new generators or updating the configuration, systemctl daemon-reload may

 be executed. This will re-run all generators, updating environment configuration. It will

 be used for any services that are started subsequently.

 Environment file generators are executed similarly to unit file generators described in

 systemd.generator(7), with the following differences:

 ? Generators are executed sequentially in the alphanumerical order of the final

 component of their name. The output of each generator output is immediately parsed and

 used to update the environment for generators that run after that. Thus, later

 generators can use and/or modify the output of earlier generators.

 ? Generators are run by every manager instance, their output can be different for each

 user.

 It is recommended to use numerical prefixes for generator names to simplify ordering.

EXAMPLES

 Example 1. A simple generator that extends an environment variable if a directory exists

 in the file system

 # 50-xdg-data-dirs.sh

 #!/bin/bash

 # set the default value

 XDG_DATA_DIRS="${XDG_DATA_DIRS:-/usr/local/share/:/usr/share}"

 # add a directory if it exists

 if [[-d /opt/foo/share]]; then

 XDG_DATA_DIRS="/opt/foo/share:${XDG_DATA_DIRS}"

 fi

 # write our output

 echo "XDG_DATA_DIRS=${XDG_DATA_DIRS}"

 Example 2. A more complicated generator which reads existing configuration and mutates one Page 2/4

 variable

 # 90-rearrange-path.py

 #!/usr/bin/env python3

 """

 Proof-of-concept systemd environment generator that makes sure that bin dirs

 are always after matching sbin dirs in the path.

 (Changes /sbin:/bin:/foo/bar to /bin:/sbin:/foo/bar.)

 This generator shows how to override the configuration possibly created by

 earlier generators. It would be easier to write in bash, but let's have it

 in Python just to prove that we can, and to serve as a template for more

 interesting generators.

 """

 import os

 import pathlib

 def rearrange_bin_sbin(path):

 """Make sure any pair of .../bin, .../sbin directories is in this order

 >>> rearrange_bin_sbin('/bin:/sbin:/usr/sbin:/usr/bin')

 '/bin:/sbin:/usr/bin:/usr/sbin'

 """

 items = [pathlib.Path(p) for p in path.split(':')]

 for i in range(len(items)):

 if 'sbin' in items[i].parts:

 ind = items[i].parts.index('sbin')

 bin = pathlib.Path(*items[i].parts[:ind], 'bin', *items[i].parts[ind+1:])

 if bin in items[i+1:]:

 j = i + 1 + items[i+1:].index(bin)

 items[i], items[j] = items[j], items[i]

 return ':'.join(p.as_posix() for p in items)

 if __name__ == '__main__':

 path = os.environ['PATH'] # This should be always set.

 # If it's not, we'll just crash, which is OK too.

 new = rearrange_bin_sbin(path)

 if new != path: Page 3/4

 print('PATH={}'.format(new))

 Example 3. Debugging a generator

 SYSTEMD_LOG_LEVEL=debug VAR_A=something VAR_B="something else" \

 /lib/systemd/system-environment-generators/path-to-generator

SEE ALSO

 systemd-environment-d-generator(8), systemd.generator(7), systemd(1), systemctl(1)

systemd 249 SYSTEMD.ENVIRONMENT-GENERATOR(7)

Page 4/4

