
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd-sysext.8'

$ man systemd-sysext.8

SYSTEMD-SYSEXT(8) systemd-sysext SYSTEMD-SYSEXT(8)

NAME

 systemd-sysext, systemd-sysext.service - Activates System Extension Images

SYNOPSIS

 systemd-sysext [OPTIONS...]

 systemd-sysext.service

DESCRIPTION

 systemd-sysext activates/deactivates system extension images. System extension images may

 ? dynamically at runtime ? extend the /usr/ and /opt/ directory hierarchies with

 additional files. This is particularly useful on immutable system images where a /usr/

 and/or /opt/ hierarchy residing on a read-only file system shall be extended temporarily

 at runtime without making any persistent modifications.

 System extension images should contain files and directories similar in fashion to regular

 operating system tree. When one or more system extension images are activated, their /usr/

 and /opt/ hierarchies are combined via "overlayfs" with the same hierarchies of the host

 OS, and the host /usr/ and /opt/ overmounted with it ("merging"). When they are

 deactivated, the mount point is disassembled ? again revealing the unmodified original

 host version of the hierarchy ("unmerging"). Merging thus makes the extension's resources

 suddenly appear below the /usr/ and /opt/ hierarchies as if they were included in the base

 OS image itself. Unmerging makes them disappear again, leaving in place only the files

 that were shipped with the base OS image itself.

 Files and directories contained in the extension images outside of the /usr/ and /opt/

 hierarchies are not merged, and hence have no effect when included in a system extension Page 1/5

 image. In particular, files in the /etc/ and /var/ included in a system extension image

 will not appear in the respective hierarchies after activation.

 System extension images are strictly read-only, and the host /usr/ and /opt/ hierarchies

 become read-only too while they are activated.

 System extensions are supposed to be purely additive, i.e. they are supposed to include

 only files that do not exist in the underlying basic OS image. However, the underlying

 mechanism (overlayfs) also allows removing files, but it is recommended not to make use of

 this.

 System extension images may be provided in the following formats:

 1. Plain directories or btrfs subvolumes containing the OS tree

 2. Disk images with a GPT disk label, following the Discoverable Partitions

 Specification[1]

 3. Disk images lacking a partition table, with a naked Linux file system (e.g. squashfs

 or ext4)

 These image formats are the same ones that systemd-nspawn(1) supports via it's

 --directory=/--image= switches and those that the service manager supports via

 RootDirectory=/RootImage=. Similar to them they may optionally carry Verity authentication

 information.

 System extensions are automatically looked for in the directories /etc/extensions/,

 /run/extensions/, /var/lib/extensions/, /usr/lib/extensions/ and

 /usr/local/lib/extensions/. The first two listed directories are not suitable for carrying

 large binary images, however are still useful for carrying symlinks to them. The primary

 place for installing system extensions is /var/lib/extensions/. Any directories found in

 these search directories are considered directory based extension images, any files with

 the .raw suffix are considered disk image based extension images.

 During boot OS extension images are activated automatically, if the systemd-sysext.service

 is enabled. Note that this service runs only after the underlying file systems where

 system extensions are searched are mounted. This means they are not suitable for shipping

 resources that are processed by subsystems running in earliest boot. Specifically, OS

 extension images are not suitable for shipping system services or systemd-sysusers(8)

 definitions. See Portable Services[2] for a simple mechanism for shipping system services

 in disk images, in a similar fashion to OS extensions. Note the different isolation on

 these two mechanisms: while system extension directly extend the underlying OS image with Page 2/5

 additional files that appear in a way very similar to as if they were shipped in the OS

 image itself and thus imply no security isolation, portable services imply service level

 sandboxing in one way or another. The systemd-sysext.service service is guaranteed to

 finish start-up before basic.target is reached; i.e. at the time regular services

 initialize (those which do not use DefaultDependencies=no), the files and directories

 system extensions provide are available in /usr/ and /opt/ and may be accessed.

 Note that there is no concept of enabling/disabling installed system extension images: all

 installed extension images are automatically activated at boot.

 A simple mechanism for version compatibility is enforced: a system extension image must

 carry a /usr/lib/extension-release.d/extension-release.$name file, which must match its

 image name, that is compared with the host os-release file: the contained ID= fields have

 to match, as well as the SYSEXT_LEVEL= field (if defined). If the latter is not defined,

 the VERSION_ID= field has to match instead. System extensions should not ship a

 /usr/lib/os-release file (as that would be merged into the host /usr/ tree, overriding the

 host OS version data, which is not desirable). The extension-release file follows the same

 format and semantics, and carries the same content, as the os-release file of the OS, but

 it describes the resources carried in the extension image.

USES

 The primary use case for system images are immutable environments where debugging and

 development tools shall optionally be made available, but not included in the immutable

 base OS image itself (e.g. strace(1) and gdb(1) shall be an optionally installable

 addition in order to make debugging/development easier). System extension images should

 not be misunderstood as a generic software packaging framework, as no dependency scheme is

 available: system extensions should carry all files they need themselves, except for those

 already shipped in the underlying host system image. Typically, system extension images

 are built at the same time as the base OS image ? within the same build system.

 Another use case for the system extension concept is temporarily overriding OS supplied

 resources with newer ones, for example to install a locally compiled development version

 of some low-level component over the immutable OS image without doing a full OS rebuild or

 modifying the nominally immutable image. (e.g. "install" a locally built package with

 DESTDIR=/var/lib/extensions/mytest make install && systemd-sysext refresh, making it

 available in /usr/ as if it was installed in the OS image itself.) This case works

 regardless if the underlying host /usr/ is managed as immutable disk image or is a Page 3/5

 traditional package manager controlled (i.e. writable) tree.

COMMANDS

 The following commands are understood:

 status

 When invoked without any command verb, or when status is specified the current merge

 status is shown, separately for both /usr/ and /opt/.

 merge

 Merges all currently installed system extension images into /usr/ and /opt/, by

 overmounting these hierarchies with an "overlayfs" file system combining the

 underlying hierarchies with those included in the extension images. This command will

 fail if the hierarchies are already merged.

 unmerge

 Unmerges all currently installed system extension images from /usr/ and /opt/, by

 unmounting the "overlayfs" file systems created by merge prior.

 refresh

 A combination of unmerge and merge: if already mounted the existing "overlayfs"

 instance is unmounted temporarily, and then replaced by a new version. This command is

 useful after installing/removing system extension images, in order to update the

 "overlayfs" file system accordingly. If no system extensions are installed when this

 command is executed, the equivalent of unmerge is executed, without establishing any

 new "overlayfs" instance. Note that currently there's a brief moment where neither the

 old nor the new "overlayfs" file system is mounted. This implies that all resources

 supplied by a system extension will briefly disappear ? even if it exists continuously

 during the refresh operation.

 list

 A brief list of installed extension images is shown.

 -h, --help

 Print a short help text and exit.

 --version

 Print a short version string and exit.

OPTIONS

 --root=

 Operate relative to the specified root directory, i.e. establish the "overlayfs" mount Page 4/5

 not on the top-level host /usr/ and /opt/ hierarchies, but below some specified root

 directory.

 --force

 When merging system extensions into /usr/ and /opt/, ignore version incompatibilities,

 i.e. force merging regardless of whether the version information included in the

 extension images matches the host or not.

 --no-pager

 Do not pipe output into a pager.

 --no-legend

 Do not print the legend, i.e. column headers and the footer with hints.

 --json=MODE

 Shows output formatted as JSON. Expects one of "short" (for the shortest possible

 output without any redundant whitespace or line breaks), "pretty" (for a pretty

 version of the same, with indentation and line breaks) or "off" (to turn off JSON

 output, the default).

EXIT STATUS

 On success, 0 is returned.

SEE ALSO

 systemd(1), systemd-nspawn(1)

NOTES

 1. Discoverable Partitions Specification

 https://systemd.io/DISCOVERABLE_PARTITIONS

 2. Portable Services

 https://systemd.io/PORTABLE_SERVICES

systemd 249 SYSTEMD-SYSEXT(8)

Page 5/5

