
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd-notify.1'

$ man systemd-notify.1

SYSTEMD-NOTIFY(1) systemd-notify SYSTEMD-NOTIFY(1)

NAME

 systemd-notify - Notify service manager about start-up completion and other daemon status

 changes

SYNOPSIS

 systemd-notify [OPTIONS...] [VARIABLE=VALUE...]

DESCRIPTION

 systemd-notify may be called by daemon scripts to notify the init system about status

 changes. It can be used to send arbitrary information, encoded in an

 environment-block-like list of strings. Most importantly, it can be used for start-up

 completion notification.

 This is mostly just a wrapper around sd_notify() and makes this functionality available to

 shell scripts. For details see sd_notify(3).

 The command line may carry a list of environment variables to send as part of the status

 update.

 Note that systemd will refuse reception of status updates from this command unless

 NotifyAccess= is set for the service unit this command is called from.

 Note that sd_notify() notifications may be attributed to units correctly only if either

 the sending process is still around at the time PID 1 processes the message, or if the

 sending process is explicitly runtime-tracked by the service manager. The latter is the

 case if the service manager originally forked off the process, i.e. on all processes that

 match NotifyAccess=main or NotifyAccess=exec. Conversely, if an auxiliary process of the

 unit sends an sd_notify() message and immediately exits, the service manager might not be Page 1/4

 able to properly attribute the message to the unit, and thus will ignore it, even if

 NotifyAccess=all is set for it. When --no-block is used, all synchronization for reception

 of notifications is disabled, and hence the aforementioned race may occur if the invoking

 process is not the service manager or spawned by the service manager.

 Hence, systemd-notify will first attempt to invoke sd_notify() pretending to have the PID

 of the invoking process. This will only succeed when invoked with sufficient privileges.

 On failure, it will then fall back to invoking it under its own PID. This behaviour is

 useful in order that when the tool is invoked from a shell script the shell process ? and

 not the systemd-notify process ? appears as sender of the message, which in turn is

 helpful if the shell process is the main process of a service, due to the limitations of

 NotifyAccess=all. Use the --pid= switch to tweak this behaviour.

OPTIONS

 The following options are understood:

 --ready

 Inform the init system about service start-up completion. This is equivalent to

 systemd-notify READY=1. For details about the semantics of this option see

 sd_notify(3).

 --pid=

 Inform the service manager about the main PID of the daemon. Takes a PID as argument.

 If the argument is specified as "auto" or omitted, the PID of the process that invoked

 systemd-notify is used, except if that's the service manager. If the argument is

 specified as "self", the PID of the systemd-notify command itself is used, and if

 "parent" is specified the calling process' PID is used ? even if it is the service

 manager. This is equivalent to systemd-notify MAINPID=$PID. For details about the

 semantics of this option see sd_notify(3).

 --uid=USER

 Set the user ID to send the notification from. Takes a UNIX user name or numeric UID.

 When specified the notification message will be sent with the specified UID as sender,

 in place of the user the command was invoked as. This option requires sufficient

 privileges in order to be able manipulate the user identity of the process.

 --status=

 Send a free-form status string for the daemon to the init systemd. This option takes

 the status string as argument. This is equivalent to systemd-notify STATUS=.... For Page 2/4

 details about the semantics of this option see sd_notify(3).

 --booted

 Returns 0 if the system was booted up with systemd, non-zero otherwise. If this option

 is passed, no message is sent. This option is hence unrelated to the other options.

 For details about the semantics of this option, see sd_booted(3). An alternate way to

 check for this state is to call systemctl(1) with the is-system-running command. It

 will return "offline" if the system was not booted with systemd.

 --no-block

 Do not synchronously wait for the requested operation to finish. Use of this option is

 only recommended when systemd-notify is spawned by the service manager, or when the

 invoking process is directly spawned by the service manager and has enough privileges

 to allow systemd-notify to send the notification on its behalf. Sending notifications

 with this option set is prone to race conditions in all other cases.

 -h, --help

 Print a short help text and exit.

 --version

 Print a short version string and exit.

EXIT STATUS

 On success, 0 is returned, a non-zero failure code otherwise.

EXAMPLE

 Example 1. Start-up Notification and Status Updates

 A simple shell daemon that sends start-up notifications after having set up its

 communication channel. During runtime it sends further status updates to the init system:

 #!/bin/bash

 mkfifo /tmp/waldo

 systemd-notify --ready --status="Waiting for data..."

 while : ; do

 read a < /tmp/waldo

 systemd-notify --status="Processing $a"

 # Do something with $a ...

 systemd-notify --status="Waiting for data..."

 done

SEE ALSO Page 3/4

 systemd(1), systemctl(1), systemd.unit(5), sd_notify(3), sd_booted(3)

systemd 249 SYSTEMD-NOTIFY(1)

Page 4/4

