
Rocky Enterprise Linux 9.2 Manual Pages on command 'sync_file_range.2'

$ man sync_file_range.2

SYNC_FILE_RANGE(2) Linux Programmer's Manual SYNC_FILE_RANGE(2)

NAME

 sync_file_range - sync a file segment with disk

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <fcntl.h>

 int sync_file_range(int fd, off64_t offset, off64_t nbytes,

 unsigned int flags);

DESCRIPTION

 sync_file_range() permits fine control when synchronizing the open file referred to by the

 file descriptor fd with disk.

 offset is the starting byte of the file range to be synchronized. nbytes specifies the

 length of the range to be synchronized, in bytes; if nbytes is zero, then all bytes from

 offset through to the end of file are synchronized. Synchronization is in units of the

 system page size: offset is rounded down to a page boundary; (offset+nbytes-1) is rounded

 up to a page boundary.

 The flags bit-mask argument can include any of the following values:

 SYNC_FILE_RANGE_WAIT_BEFORE

 Wait upon write-out of all pages in the specified range that have already been sub?

 mitted to the device driver for write-out before performing any write.

 SYNC_FILE_RANGE_WRITE

 Initiate write-out of all dirty pages in the specified range which are not pres?

 ently submitted write-out. Note that even this may block if you attempt to write Page 1/4

 more than request queue size.

 SYNC_FILE_RANGE_WAIT_AFTER

 Wait upon write-out of all pages in the range after performing any write.

 Specifying flags as 0 is permitted, as a no-op.

 Warning

 This system call is extremely dangerous and should not be used in portable programs. None

 of these operations writes out the file's metadata. Therefore, unless the application is

 strictly performing overwrites of already-instantiated disk blocks, there are no guaran?

 tees that the data will be available after a crash. There is no user interface to know if

 a write is purely an overwrite. On filesystems using copy-on-write semantics (e.g.,

 btrfs) an overwrite of existing allocated blocks is impossible. When writing into preal?

 located space, many filesystems also require calls into the block allocator, which this

 system call does not sync out to disk. This system call does not flush disk write caches

 and thus does not provide any data integrity on systems with volatile disk write caches.

 Some details

 SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any I/O errors or

 ENOSPC conditions and will return these to the caller.

 Useful combinations of the flags bits are:

 SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE

 Ensures that all pages in the specified range which were dirty when

 sync_file_range() was called are placed under write-out. This is a start-write-

 for-data-integrity operation.

 SYNC_FILE_RANGE_WRITE

 Start write-out of all dirty pages in the specified range which are not presently

 under write-out. This is an asynchronous flush-to-disk operation. This is not

 suitable for data integrity operations.

 SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER)

 Wait for completion of write-out of all pages in the specified range. This can be

 used after an earlier SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE operation

 to wait for completion of that operation, and obtain its result.

 SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE | SYNC_FILE_RANGE_WAIT_AFTER

 This is a write-for-data-integrity operation that will ensure that all pages in the

 specified range which were dirty when sync_file_range() was called are committed to Page 2/4

 disk.

RETURN VALUE

 On success, sync_file_range() returns 0; on failure -1 is returned and errno is set to in?

 dicate the error.

ERRORS

 EBADF fd is not a valid file descriptor.

 EINVAL flags specifies an invalid bit; or offset or nbytes is invalid.

 EIO I/O error.

 ENOMEM Out of memory.

 ENOSPC Out of disk space.

 ESPIPE fd refers to something other than a regular file, a block device, or a directory.

VERSIONS

 sync_file_range() appeared on Linux in kernel 2.6.17.

CONFORMING TO

 This system call is Linux-specific, and should be avoided in portable programs.

NOTES

 sync_file_range2()

 Some architectures (e.g., PowerPC, ARM) need 64-bit arguments to be aligned in a suitable

 pair of registers. On such architectures, the call signature of sync_file_range() shown

 in the SYNOPSIS would force a register to be wasted as padding between the fd and offset

 arguments. (See syscall(2) for details.) Therefore, these architectures define a differ?

 ent system call that orders the arguments suitably:

 int sync_file_range2(int fd, unsigned int flags,

 off64_t offset, off64_t nbytes);

 The behavior of this system call is otherwise exactly the same as sync_file_range().

 A system call with this signature first appeared on the ARM architecture in Linux 2.6.20,

 with the name arm_sync_file_range(). It was renamed in Linux 2.6.22, when the analogous

 system call was added for PowerPC. On architectures where glibc support is provided,

 glibc transparently wraps sync_file_range2() under the name sync_file_range().

SEE ALSO

 fdatasync(2), fsync(2), msync(2), sync(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the Page 3/4

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SYNC_FILE_RANGE(2)

Page 4/4

