
Rocky Enterprise Linux 9.2 Manual Pages on command 'swapon.2'

$ man swapon.2

SWAPON(2) Linux Programmer's Manual SWAPON(2)

NAME

 swapon, swapoff - start/stop swapping to file/device

SYNOPSIS

 #include <unistd.h>

 #include <sys/swap.h>

 int swapon(const char *path, int swapflags);

 int swapoff(const char *path);

DESCRIPTION

 swapon() sets the swap area to the file or block device specified by path. swapoff()

 stops swapping to the file or block device specified by path.

 If the SWAP_FLAG_PREFER flag is specified in the swapon() swapflags argument, the new swap

 area will have a higher priority than default. The priority is encoded within swapflags

 as:

 (prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK

 If the SWAP_FLAG_DISCARD flag is specified in the swapon() swapflags argument, freed swap

 pages will be discarded before they are reused, if the swap device supports the discard or

 trim operation. (This may improve performance on some Solid State Devices, but often it

 does not.) See also NOTES.

 These functions may be used only by a privileged process (one having the CAP_SYS_ADMIN ca?

 pability).

 Priority

 Each swap area has a priority, either high or low. The default priority is low. Within Page 1/3

 the low-priority areas, newer areas are even lower priority than older areas.

 All priorities set with swapflags are high-priority, higher than default. They may have

 any nonnegative value chosen by the caller. Higher numbers mean higher priority.

 Swap pages are allocated from areas in priority order, highest priority first. For areas

 with different priorities, a higher-priority area is exhausted before using a lower-prior?

 ity area. If two or more areas have the same priority, and it is the highest priority

 available, pages are allocated on a round-robin basis between them.

 As of Linux 1.3.6, the kernel usually follows these rules, but there are exceptions.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 EBUSY (for swapon()) The specified path is already being used as a swap area.

 EINVAL The file path exists, but refers neither to a regular file nor to a block device;

 EINVAL (swapon()) The indicated path does not contain a valid swap signature or resides on

 an in-memory filesystem such as tmpfs(5).

 EINVAL (since Linux 3.4)

 (swapon()) An invalid flag value was specified in swapflags.

 EINVAL (swapoff()) path is not currently a swap area.

 ENFILE The system-wide limit on the total number of open files has been reached.

 ENOENT The file path does not exist.

 ENOMEM The system has insufficient memory to start swapping.

 EPERM The caller does not have the CAP_SYS_ADMIN capability. Alternatively, the maximum

 number of swap files are already in use; see NOTES below.

CONFORMING TO

 These functions are Linux-specific and should not be used in programs intended to be por?

 table. The second swapflags argument was introduced in Linux 1.3.2.

NOTES

 The partition or path must be prepared with mkswap(8).

 There is an upper limit on the number of swap files that may be used, defined by the ker?

 nel constant MAX_SWAPFILES. Before kernel 2.4.10, MAX_SWAPFILES has the value 8; since

 kernel 2.4.10, it has the value 32. Since kernel 2.6.18, the limit is decreased by 2

 (thus: 30) if the kernel is built with the CONFIG_MIGRATION option (which reserves two

 swap table entries for the page migration features of mbind(2) and migrate_pages(2)). Page 2/3

 Since kernel 2.6.32, the limit is further decreased by 1 if the kernel is built with the

 CONFIG_MEMORY_FAILURE option.

 Discard of swap pages was introduced in kernel 2.6.29, then made conditional on the

 SWAP_FLAG_DISCARD flag in kernel 2.6.36, which still discards the entire swap area when

 swapon() is called, even if that flag bit is not set.

SEE ALSO

 mkswap(8), swapoff(8), swapon(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SWAPON(2)

Page 3/3

