
Rocky Enterprise Linux 9.2 Manual Pages on command 'sudo_plugin.8'

$ man sudo_plugin.8

SUDO_PLUGIN(5) BSD File Formats Manual SUDO_PLUGIN(5)

NAME

 sudo_plugin ? Sudo Plugin API

DESCRIPTION

 Starting with version 1.8, sudo supports a plugin API for policy and session logging. Plug?

 ins may be compiled as dynamic shared objects (the default on systems that support them) or

 compiled statically into the sudo binary itself. By default, the sudoers plugin provides

 audit, security policy and I/O logging capabilities. Via the plugin API, sudo can be con?

 figured to use alternate plugins provided by third parties. The plugins to be used are

 specified in the sudo.conf(5) file.

 The API is versioned with a major and minor number. The minor version number is incremented

 when additions are made. The major number is incremented when incompatible changes are

 made. A plugin should be check the version passed to it and make sure that the major ver?

 sion matches.

 The plugin API is defined by the sudo_plugin.h header file.

 Policy plugin API

 A policy plugin must declare and populate a policy_plugin struct in the global scope. This

 structure contains pointers to the functions that implement the sudo policy checks. The

 name of the symbol should be specified in sudo.conf(5) along with a path to the plugin so

 that sudo can load it.

 struct policy_plugin {

 #define SUDO_POLICY_PLUGIN 1

 unsigned int type; /* always SUDO_POLICY_PLUGIN */ Page 1/61

 unsigned int version; /* always SUDO_API_VERSION */

 int (*open)(unsigned int version, sudo_conv_t conversation,

 sudo_printf_t plugin_printf, char * const settings[],

 char * const user_info[], char * const user_env[],

 char * const plugin_options[], const char **errstr);

 void (*close)(int exit_status, int error);

 int (*show_version)(int verbose);

 int (*check_policy)(int argc, char * const argv[],

 char *env_add[], char **command_info[],

 char **argv_out[], char **user_env_out[], const char **errstr);

 int (*list)(int argc, char * const argv[], int verbose,

 const char *list_user, const char **errstr);

 int (*validate)(const char **errstr);

 void (*invalidate)(int remove);

 int (*init_session)(struct passwd *pwd, char **user_env[],

 const char **errstr);

 void (*register_hooks)(int version,

 int (*register_hook)(struct sudo_hook *hook));

 void (*deregister_hooks)(int version,

 int (*deregister_hook)(struct sudo_hook *hook));

 struct sudo_plugin_event * (*event_alloc)(void);

 };

 The policy_plugin struct has the following fields:

 type The type field should always be set to SUDO_POLICY_PLUGIN.

 version

 The version field should be set to SUDO_API_VERSION.

 This allows sudo to determine the API version the plugin was built against.

 open

 int (*open)(unsigned int version, sudo_conv_t conversation,

 sudo_printf_t plugin_printf, char * const settings[],

 char * const user_info[], char * const user_env[],

 char * const plugin_options[], const char **errstr);

 Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was Page 2/61

 a usage error. In the latter case, sudo will print a usage message before it exits.

 If an error occurs, the plugin may optionally call the conversation() or

 plugin_printf() function with SUDO_CONF_ERROR_MSG to present additional error informa?

 tion to the user.

 The function arguments are as follows:

 version

 The version passed in by sudo allows the plugin to determine the major and minor

 version number of the plugin API supported by sudo.

 conversation

 A pointer to the conversation() function that can be used by the plugin to in?

 teract with the user (see Conversation API for details). Returns 0 on success

 and -1 on failure.

 plugin_printf

 A pointer to a printf()-style function that may be used to display informational

 or error messages (see Conversation API for details). Returns the number of

 characters printed on success and -1 on failure.

 settings

 A vector of user-supplied sudo settings in the form of ?name=value? strings.

 The vector is terminated by a NULL pointer. These settings correspond to op?

 tions the user specified when running sudo. As such, they will only be present

 when the corresponding option has been specified on the command line.

 When parsing settings, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 The following values may be set by sudo:

 bsdauth_type=string

 Authentication type, if specified by the -a option, to use on systems

 where BSD authentication is supported.

 closefrom=number

 If specified, the user has requested via the -C option that sudo close all

 files descriptors with a value of number or higher. The plugin may op?

 tionally pass this, or another value, back in the command_info list.

 cmnd_chroot=string

 The root directory (see chroot(2)) to run the command in, as specified by Page 3/61

 the user via the -R option. The plugin may ignore or restrict the user's

 ability to specify a new root directory. Only available starting with API

 version 1.16.

 cmnd_cwd=string

 The working directory to run the command in, as specified by the user via

 the -D option. The plugin may ignore or restrict the user's ability to

 specify a new working directory. Only available starting with API version

 1.16.

 debug_flags=string

 A debug file path name followed by a space and a comma-separated list of

 debug flags that correspond to the plugin's Debug entry in sudo.conf(5),

 if there is one. The flags are passed to the plugin exactly as they ap?

 pear in sudo.conf(5). The syntax used by sudo and the sudoers plugin is

 subsystem@priority but a plugin is free to use a different format so long

 as it does not include a comma (?,?). Prior to sudo 1.8.12, there was no

 way to specify plugin-specific debug_flags so the value was always the

 same as that used by the sudo front-end and did not include a path name,

 only the flags themselves. As of version 1.7 of the plugin interface,

 sudo will only pass debug_flags if sudo.conf(5) contains a plugin-specific

 Debug entry.

 ignore_ticket=bool

 Set to true if the user specified the -k option along with a command, in?

 dicating that the user wishes to ignore any cached authentication creden?

 tials. implied_shell to true. This allows sudo with no arguments to be

 used similarly to su(1). If the plugin does not to support this usage, it

 may return a value of -2 from the check_policy() function, which will

 cause sudo to print a usage message and exit.

 implied_shell=bool

 If the user does not specify a program on the command line, sudo will pass

 the plugin the path to the user's shell and set

 login_class=string

 BSD login class to use when setting resource limits and nice value, if

 specified by the -c option. Page 4/61

 login_shell=bool

 Set to true if the user specified the -i option, indicating that the user

 wishes to run a login shell.

 max_groups=int

 The maximum number of groups a user may belong to. This will only be

 present if there is a corresponding setting in sudo.conf(5).

 network_addrs=list

 A space-separated list of IP network addresses and netmasks in the form

 ?addr/netmask?, e.g., ?192.168.1.2/255.255.255.0?. The address and net?

 mask pairs may be either IPv4 or IPv6, depending on what the operating

 system supports. If the address contains a colon (?:?), it is an IPv6 ad?

 dress, else it is IPv4.

 noninteractive=bool

 Set to true if the user specified the -n option, indicating that sudo

 should operate in non-interactive mode. The plugin may reject a command

 run in non-interactive mode if user interaction is required.

 plugin_dir=string

 The default plugin directory used by the sudo front-end. This is the de?

 fault directory set at compile time and may not correspond to the direc?

 tory the running plugin was loaded from. It may be used by a plugin to

 locate support files.

 plugin_path=string

 The path name of plugin loaded by the sudo front-end. The path name will

 be a fully-qualified unless the plugin was statically compiled into sudo.

 preserve_environment=bool

 Set to true if the user specified the -E option, indicating that the user

 wishes to preserve the environment.

 preserve_groups=bool

 Set to true if the user specified the -P option, indicating that the user

 wishes to preserve the group vector instead of setting it based on the

 runas user.

 progname=string

 The command name that sudo was run as, typically ?sudo? or ?sudoedit?. Page 5/61

 prompt=string

 The prompt to use when requesting a password, if specified via the -p op?

 tion.

 remote_host=string

 The name of the remote host to run the command on, if specified via the -h

 option. Support for running the command on a remote host is meant to be

 implemented via a helper program that is executed in place of the user-

 specified command. The sudo front-end is only capable of executing com?

 mands on the local host. Only available starting with API version 1.4.

 run_shell=bool

 Set to true if the user specified the -s option, indicating that the user

 wishes to run a shell.

 runas_group=string

 The group name or group-ID to run the command as, if specified via the -g

 option.

 runas_user=string

 The user name or user-ID to run the command as, if specified via the -u

 option.

 selinux_role=string

 SELinux role to use when executing the command, if specified by the -r op?

 tion.

 selinux_type=string

 SELinux type to use when executing the command, if specified by the -t op?

 tion.

 set_home=bool

 Set to true if the user specified the -H option. If true, set the HOME

 environment variable to the target user's home directory.

 sudoedit=bool

 Set to true when the -e option is specified or if invoked as sudoedit.

 The plugin shall substitute an editor into argv in the check_policy()

 function or return -2 with a usage error if the plugin does not support

 sudoedit. For more information, see the check_policy section.

 timeout=string Page 6/61

 Command timeout specified by the user via the -T option. Not all plugins

 support command timeouts and the ability of the user to set a timeout may

 be restricted by policy. The format of the timeout string is plugin-spe?

 cific.

 Additional settings may be added in the future so the plugin should silently ig?

 nore settings that it does not recognize.

 user_info

 A vector of information about the user running the command in the form of

 ?name=value? strings. The vector is terminated by a NULL pointer.

 When parsing user_info, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 The following values may be set by sudo:

 cols=int

 The number of columns the user's terminal supports. If there is no termi?

 nal device available, a default value of 80 is used.

 cwd=string

 The user's current working directory.

 egid=gid_t

 The effective group-ID of the user invoking sudo.

 euid=uid_t

 The effective user-ID of the user invoking sudo.

 gid=gid_t

 The real group-ID of the user invoking sudo.

 groups=list

 The user's supplementary group list formatted as a string of comma-sepa?

 rated group-IDs.

 host=string

 The local machine's hostname as returned by the gethostname(2) system

 call.

 lines=int

 The number of lines the user's terminal supports. If there is no terminal

 device available, a default value of 24 is used.

 pgid=int Page 7/61

 The ID of the process group that the running sudo process is a member of.

 Only available starting with API version 1.2.

 pid=int

 The process ID of the running sudo process. Only available starting with

 API version 1.2.

 ppid=int

 The parent process ID of the running sudo process. Only available start?

 ing with API version 1.2.

 rlimit_as=soft,hard

 The maximum size to which the process's address space may grow (in bytes),

 if supported by the operating system. The soft and hard limits are sepa?

 rated by a comma. A value of ?infinity? indicates that there is no limit.

 Only available starting with API version 1.16.

 rlimit_core=soft,hard

 The largest size core dump file that may be created (in bytes). The soft

 and hard limits are separated by a comma. A value of ?infinity? indicates

 that there is no limit. Only available starting with API version 1.16.

 rlimit_cpu=soft,hard

 The maximum amount of CPU time that the process may use (in seconds). The

 soft and hard limits are separated by a comma. A value of ?infinity? in?

 dicates that there is no limit. Only available starting with API version

 1.16.

 rlimit_data=soft,hard

 The maximum size of the data segment for the process (in bytes). The soft

 and hard limits are separated by a comma. A value of ?infinity? indicates

 that there is no limit. Only available starting with API version 1.16.

 rlimit_fsize=soft,hard

 The largest size file that the process may create (in bytes). The soft

 and hard limits are separated by a comma. A value of ?infinity? indicates

 that there is no limit. Only available starting with API version 1.16.

 rlimit_locks=soft,hard

 The maximum number of locks that the process may establish, if supported

 by the operating system. The soft and hard limits are separated by a Page 8/61

 comma. A value of ?infinity? indicates that there is no limit. Only

 available starting with API version 1.16.

 rlimit_memlock=soft,hard

 The maximum size that the process may lock in memory (in bytes), if sup?

 ported by the operating system. The soft and hard limits are separated by

 a comma. A value of ?infinity? indicates that there is no limit. Only

 available starting with API version 1.16.

 rlimit_nofile=soft,hard

 The maximum number of files that the process may have open. The soft and

 hard limits are separated by a comma. A value of ?infinity? indicates

 that there is no limit. Only available starting with API version 1.16.

 rlimit_nproc=soft,hard

 The maximum number of processes that the user may run simultaneously. The

 soft and hard limits are separated by a comma. A value of ?infinity? in?

 dicates that there is no limit. Only available starting with API version

 1.16.

 rlimit_rss=soft,hard

 The maximum size to which the process's resident set size may grow (in

 bytes). The soft and hard limits are separated by a comma. A value of

 ?infinity? indicates that there is no limit. Only available starting with

 API version 1.16.

 rlimit_stack=soft,hard

 The maximum size to which the process's stack may grow (in bytes). The

 soft and hard limits are separated by a comma. A value of ?infinity? in?

 dicates that there is no limit. Only available starting with API version

 1.16.

 sid=int

 The session ID of the running sudo process or 0 if sudo is not part of a

 POSIX job control session. Only available starting with API version 1.2.

 tcpgid=int

 The ID of the foreground process group associated with the terminal device

 associated with the sudo process or 0 if there is no terminal present.

 Only available starting with API version 1.2. Page 9/61

 tty=string

 The path to the user's terminal device. If the user has no terminal de?

 vice associated with the session, the value will be empty, as in ?tty=?.

 uid=uid_t

 The real user-ID of the user invoking sudo.

 umask=octal

 The invoking user's file creation mask. Only available starting with API

 version 1.10.

 user=string

 The name of the user invoking sudo.

 user_env

 The user's environment in the form of a NULL-terminated vector of ?name=value?

 strings.

 When parsing user_env, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 plugin_options

 Any (non-comment) strings immediately after the plugin path are passed as argu?

 ments to the plugin. These arguments are split on a white space boundary and

 are passed to the plugin in the form of a NULL-terminated array of strings. If

 no arguments were specified, plugin_options will be the NULL pointer.

 NOTE: the plugin_options parameter is only available starting with API version

 1.2. A plugin must check the API version specified by the sudo front-end before

 using plugin_options. Failure to do so may result in a crash.

 errstr

 If the open() function returns a value other than 1, the plugin may store a mes?

 sage describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 close

 void (*close)(int exit_status, int error); Page 10/61

 The close() function is called when sudo is finished, shortly before it exits. Start?

 ing with API version 1.15, close() is called regardless of whether or not a command

 was actually executed. This makes it possible for plugins to perform cleanup even

 when a command was not run. It is not possible to tell whether a command was run

 based solely on the arguments passed to the close() function. To determine if a com?

 mand was actually run, the plugin must keep track of whether or not the check_policy()

 function returned successfully.

 The function arguments are as follows:

 exit_status

 The command's exit status, as returned by the wait(2) system call, or zero if no

 command was run. The value of exit_status is undefined if error is non-zero.

 error

 If the command could not be executed, this is set to the value of errno set by

 the execve(2) system call. The plugin is responsible for displaying error in?

 formation via the conversation() or plugin_printf() function. If the command

 was successfully executed, the value of error is zero.

 If no close() function is defined, no I/O logging plugins are loaded, and neither the

 timeout not use_pty options are set in the command_info list, the sudo front-end may

 execute the command directly instead of running it as a child process.

 show_version

 int (*show_version)(int verbose);

 The show_version() function is called by sudo when the user specifies the -V option.

 The plugin may display its version information to the user via the conversation() or

 plugin_printf() function using SUDO_CONV_INFO_MSG. If the user requests detailed ver?

 sion information, the verbose flag will be set.

 Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was

 a usage error, although the return value is currently ignored.

 check_policy

 int (*check_policy)(int argc, char * const argv[], char *env_add[],

 char **command_info[], char **argv_out[], char **user_env_out[],

 const char **errstr);

 The check_policy() function is called by sudo to determine whether the user is allowed

 to run the specified commands. Page 11/61

 If the sudoedit option was enabled in the settings array passed to the open() func?

 tion, the user has requested sudoedit mode. sudoedit is a mechanism for editing one

 or more files where an editor is run with the user's credentials instead of with ele?

 vated privileges. sudo achieves this by creating user-writable temporary copies of

 the files to be edited and then overwriting the originals with the temporary copies

 after editing is complete. If the plugin supports sudoedit, it should choose the edi?

 tor to be used, potentially from a variable in the user's environment, such as EDITOR,

 and include it in argv_out (note that environment variables may include command line

 options). The files to be edited should be copied from argv into argv_out, separated

 from the editor and its arguments by a ?--? element. The ?--? will be removed by sudo

 before the editor is executed. The plugin should also set sudoedit=true in the

 command_info list.

 The check_policy() function returns 1 if the command is allowed, 0 if not allowed, -1

 for a general error, or -2 for a usage error or if sudoedit was specified but is un?

 supported by the plugin. In the latter case, sudo will print a usage message before

 it exits. If an error occurs, the plugin may optionally call the conversation() or

 plugin_printf() function with SUDO_CONF_ERROR_MSG to present additional error informa?

 tion to the user.

 The function arguments are as follows:

 argc The number of elements in argv, not counting the final NULL pointer.

 argv The argument vector describing the command the user wishes to run, in the same

 form as what would be passed to the execve(2) system call. The vector is termi?

 nated by a NULL pointer.

 env_add

 Additional environment variables specified by the user on the command line in

 the form of a NULL-terminated vector of ?name=value? strings. The plugin may

 reject the command if one or more variables are not allowed to be set, or it may

 silently ignore such variables.

 When parsing env_add, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 command_info

 Information about the command being run in the form of ?name=value? strings.

 These values are used by sudo to set the execution environment when running a Page 12/61

 command. The plugin is responsible for creating and populating the vector,

 which must be terminated with a NULL pointer. The following values are recog?

 nized by sudo:

 chroot=string

 The root directory to use when running the command.

 closefrom=number

 If specified, sudo will close all files descriptors with a value of number

 or higher.

 command=string

 Fully qualified path to the command to be executed.

 cwd=string

 The current working directory to change to when executing the command. If

 sudo is unable to change to the new working directory, the command will

 not be run unless cwd_optional is also set (see below).

 cwd_optional=bool

 If enabled, sudo will treat an inability to change to the new working di?

 rectory as a non-fatal error. This setting has no effect unless cwd is

 also set.

 exec_background=bool

 By default, sudo runs a command as the foreground process as long as sudo

 itself is running in the foreground. When exec_background is enabled and

 the command is being run in a pseudo-terminal (due to I/O logging or the

 use_pty setting), the command will be run as a background process. At?

 tempts to read from the controlling terminal (or to change terminal set?

 tings) will result in the command being suspended with the SIGTTIN signal

 (or SIGTTOU in the case of terminal settings). If this happens when sudo

 is a foreground process, the command will be granted the controlling ter?

 minal and resumed in the foreground with no user intervention required.

 The advantage of initially running the command in the background is that

 sudo need not read from the terminal unless the command explicitly re?

 quests it. Otherwise, any terminal input must be passed to the command,

 whether it has required it or not (the kernel buffers terminals so it is

 not possible to tell whether the command really wants the input). This is Page 13/61

 different from historic sudo behavior or when the command is not being run

 in a pseudo-terminal.

 For this to work seamlessly, the operating system must support the auto?

 matic restarting of system calls. Unfortunately, not all operating sys?

 tems do this by default, and even those that do may have bugs. For exam?

 ple, macOS fails to restart the tcgetattr() and tcsetattr() system calls

 (this is a bug in macOS). Furthermore, because this behavior depends on

 the command stopping with the SIGTTIN or SIGTTOU signals, programs that

 catch these signals and suspend themselves with a different signal (usu?

 ally SIGTOP) will not be automatically foregrounded. Some versions of the

 linux su(1) command behave this way. Because of this, a plugin should not

 set exec_background unless it is explicitly enabled by the administrator

 and there should be a way to enabled or disable it on a per-command basis.

 This setting has no effect unless I/O logging is enabled or use_pty is en?

 abled.

 execfd=number

 If specified, sudo will use the fexecve(2) system call to execute the com?

 mand instead of execve(2). The specified number must refer to an open

 file descriptor.

 iolog_compress=bool

 Set to true if the I/O logging plugins, if any, should compress the log

 data. This is a hint to the I/O logging plugin which may choose to ignore

 it.

 iolog_group=string

 The group that will own newly created I/O log files and directories. This

 is a hint to the I/O logging plugin which may choose to ignore it.

 iolog_mode=octal

 The file permission mode to use when creating I/O log files and directo?

 ries. This is a hint to the I/O logging plugin which may choose to ignore

 it.

 iolog_user=string

 The user that will own newly created I/O log files and directories. This

 is a hint to the I/O logging plugin which may choose to ignore it. Page 14/61

 iolog_path=string

 Fully qualified path to the file or directory in which I/O log is to be

 stored. This is a hint to the I/O logging plugin which may choose to ig?

 nore it. If no I/O logging plugin is loaded, this setting has no effect.

 iolog_stdin=bool

 Set to true if the I/O logging plugins, if any, should log the standard

 input if it is not connected to a terminal device. This is a hint to the

 I/O logging plugin which may choose to ignore it.

 iolog_stdout=bool

 Set to true if the I/O logging plugins, if any, should log the standard

 output if it is not connected to a terminal device. This is a hint to the

 I/O logging plugin which may choose to ignore it.

 iolog_stderr=bool

 Set to true if the I/O logging plugins, if any, should log the standard

 error if it is not connected to a terminal device. This is a hint to the

 I/O logging plugin which may choose to ignore it.

 iolog_ttyin=bool

 Set to true if the I/O logging plugins, if any, should log all terminal

 input. This only includes input typed by the user and not from a pipe or

 redirected from a file. This is a hint to the I/O logging plugin which

 may choose to ignore it.

 iolog_ttyout=bool

 Set to true if the I/O logging plugins, if any, should log all terminal

 output. This only includes output to the screen, not output to a pipe or

 file. This is a hint to the I/O logging plugin which may choose to ignore

 it.

 login_class=string

 BSD login class to use when setting resource limits and nice value (op?

 tional). This option is only set on systems that support login classes.

 nice=int

 Nice value (priority) to use when executing the command. The nice value,

 if specified, overrides the priority associated with the login_class on

 BSD systems. Page 15/61

 noexec=bool

 If set, prevent the command from executing other programs.

 preserve_fds=list

 A comma-separated list of file descriptors that should be preserved, re?

 gardless of the value of the closefrom setting. Only available starting

 with API version 1.5.

 preserve_groups=bool

 If set, sudo will preserve the user's group vector instead of initializing

 the group vector based on runas_user.

 rlimit_as=soft,hard

 The maximum size to which the process's address space may grow (in bytes),

 if supported by the operating system. The soft and hard limits are sepa?

 rated by a comma. If only a single value is specified, both the hard and

 soft limits are set. A value of ?infinity? indicates that there is no

 limit. A value of ?user? will cause the invoking user's resource limit to

 be preserved. A value of ?default? will cause the target user's default

 resource limit to be used on systems that allow per-user resource limits

 to be configured. Only available starting with API version 1.17.

 rlimit_core=soft,hard

 The largest size core dump file that may be created (in bytes). The soft

 and hard limits are separated by a comma. If only a single value is spec?

 ified, both the hard and soft limits are set. A value of ?infinity? indi?

 cates that there is no limit. A value of ?user? will cause the invoking

 user's resource limit to be preserved. A value of ?default? will cause

 the target user's default resource limit to be used on systems that allow

 per-user resource limits to be configured. Only available starting with

 API version 1.17.

 rlimit_cpu=soft,hard

 The maximum amount of CPU time that the process may use (in seconds). The

 soft and hard limits are separated by a comma. If only a single value is

 specified, both the hard and soft limits are set. A value of ?infinity?

 indicates that there is no limit. A value of ?user? will cause the invok?

 ing user's resource limit to be preserved. A value of ?default? will Page 16/61

 cause the target user's default resource limit to be used on systems that

 allow per-user resource limits to be configured. Only available starting

 with API version 1.17.

 rlimit_data=soft,hard

 The maximum size of the data segment for the process (in bytes). The soft

 and hard limits are separated by a comma. If only a single value is spec?

 ified, both the hard and soft limits are set. A value of ?infinity? indi?

 cates that there is no limit. A value of ?user? will cause the invoking

 user's resource limit to be preserved. A value of ?default? will cause

 the target user's default resource limit to be used on systems that allow

 per-user resource limits to be configured. Only available starting with

 API version 1.17.

 rlimit_fsize=soft,hard

 The largest size file that the process may create (in bytes). The soft

 and hard limits are separated by a comma. If only a single value is spec?

 ified, both the hard and soft limits are set. A value of ?infinity? indi?

 cates that there is no limit. A value of ?user? will cause the invoking

 user's resource limit to be preserved. A value of ?default? will cause

 the target user's default resource limit to be used on systems that allow

 per-user resource limits to be configured. Only available starting with

 API version 1.17.

 rlimit_locks=soft,hard

 The maximum number of locks that the process may establish, if supported

 by the operating system. The soft and hard limits are separated by a

 comma. If only a single value is specified, both the hard and soft limits

 are set. A value of ?infinity? indicates that there is no limit. A value

 of ?user? will cause the invoking user's resource limit to be preserved.

 A value of ?default? will cause the target user's default resource limit

 to be used on systems that allow per-user resource limits to be config?

 ured. Only available starting with API version 1.17.

 rlimit_memlock=soft,hard

 The maximum size that the process may lock in memory (in bytes), if sup?

 ported by the operating system. The soft and hard limits are separated by Page 17/61

 a comma. If only a single value is specified, both the hard and soft lim?

 its are set. A value of ?infinity? indicates that there is no limit. A

 value of ?user? will cause the invoking user's resource limit to be pre?

 served. A value of ?default? will cause the target user's default re?

 source limit to be used on systems that allow per-user resource limits to

 be configured. Only available starting with API version 1.17.

 rlimit_nofile=soft,hard

 The maximum number of files that the process may have open. The soft and

 hard limits are separated by a comma. If only a single value is speci?

 fied, both the hard and soft limits are set. A value of ?infinity? indi?

 cates that there is no limit. A value of ?user? will cause the invoking

 user's resource limit to be preserved. A value of ?default? will cause

 the target user's default resource limit to be used on systems that allow

 per-user resource limits to be configured. Only available starting with

 API version 1.17.

 rlimit_nproc=soft,hard

 The maximum number of processes that the user may run simultaneously. The

 soft and hard limits are separated by a comma. If only a single value is

 specified, both the hard and soft limits are set. A value of ?infinity?

 indicates that there is no limit. A value of ?user? will cause the invok?

 ing user's resource limit to be preserved. A value of ?default? will

 cause the target user's default resource limit to be used on systems that

 allow per-user resource limits to be configured. Only available starting

 with API version 1.17.

 rlimit_rss=soft,hard

 The maximum size to which the process's resident set size may grow (in

 bytes). The soft and hard limits are separated by a comma. If only a

 single value is specified, both the hard and soft limits are set. A value

 of ?infinity? indicates that there is no limit. A value of ?user? will

 cause the invoking user's resource limit to be preserved. A value of

 ?default? will cause the target user's default resource limit to be used

 on systems that allow per-user resource limits to be configured. Only

 available starting with API version 1.17. Page 18/61

 rlimit_stack=soft,hard

 The maximum size to which the process's stack may grow (in bytes). The

 soft and hard limits are separated by a comma. If only a single value is

 specified, both the hard and soft limits are set. A value of ?infinity?

 indicates that there is no limit. A value of ?user? will cause the invok?

 ing user's resource limit to be preserved. A value of ?default? will

 cause the target user's default resource limit to be used on systems that

 allow per-user resource limits to be configured. Only available starting

 with API version 1.17.

 runas_egid=gid

 Effective group-ID to run the command as. If not specified, the value of

 runas_gid is used.

 runas_euid=uid

 Effective user-ID to run the command as. If not specified, the value of

 runas_uid is used.

 runas_gid=gid

 Group-ID to run the command as.

 runas_group=string

 The name of the group the command will run as, if it is different from the

 runas_user's default group. This value is provided for auditing purposes

 only, the sudo front-end uses runas_egid and runas_gid when executing the

 command.

 runas_groups=list

 The supplementary group vector to use for the command in the form of a

 comma-separated list of group-IDs. If preserve_groups is set, this option

 is ignored.

 runas_uid=uid

 User-ID to run the command as.

 runas_user=string

 The name of the user the command will run as, which should correspond to

 runas_euid (or runas_uid if runas_euid is not set). This value is pro?

 vided for auditing purposes only, the sudo front-end uses runas_euid and

 runas_uid when executing the command. Page 19/61

 selinux_role=string

 SELinux role to use when executing the command.

 selinux_type=string

 SELinux type to use when executing the command.

 set_utmp=bool

 Create a utmp (or utmpx) entry when a pseudo-terminal is allocated. By

 default, the new entry will be a copy of the user's existing utmp entry

 (if any), with the tty, time, type, and pid fields updated.

 sudoedit=bool

 Set to true when in sudoedit mode. The plugin may enable sudoedit mode

 even if sudo was not invoked as sudoedit. This allows the plugin to per?

 form command substitution and transparently enable sudoedit when the user

 attempts to run an editor.

 sudoedit_checkdir=bool

 Set to false to disable directory writability checks in sudoedit. By de?

 fault, sudoedit 1.8.16 and higher will check all directory components of

 the path to be edited for writability by the invoking user. Symbolic

 links will not be followed in writable directories and sudoedit will

 refuse to edit a file located in a writable directory. These restrictions

 are not enforced when sudoedit is run by root. The sudoedit_follow option

 can be set to false to disable this check. Only available starting with

 API version 1.8.

 sudoedit_follow=bool

 Set to true to allow sudoedit to edit files that are symbolic links. By

 default, sudoedit 1.8.15 and higher will refuse to open a symbolic link.

 The sudoedit_follow option can be used to restore the older behavior and

 allow sudoedit to open symbolic links. Only available starting with API

 version 1.8.

 timeout=int

 Command timeout. If non-zero then when the timeout expires the command

 will be killed.

 umask=octal

 The file creation mask to use when executing the command. This value may Page 20/61

 be overridden by PAM or login.conf on some systems unless the

 umask_override option is also set.

 umask_override=bool

 Force the value specified by the umask option to override any umask set by

 PAM or login.conf.

 use_pty=bool

 Allocate a pseudo-terminal to run the command in, regardless of whether or

 not I/O logging is in use. By default, sudo will only run the command in

 a pseudo-terminal when an I/O log plugin is loaded.

 utmp_user=string

 User name to use when constructing a new utmp (or utmpx) entry when

 set_utmp is enabled. This option can be used to set the user field in the

 utmp entry to the user the command runs as rather than the invoking user.

 If not set, sudo will base the new entry on the invoking user's existing

 entry.

 Unsupported values will be ignored.

 argv_out

 The NULL-terminated argument vector to pass to the execve(2) system call when

 executing the command. The plugin is responsible for allocating and populating

 the vector.

 user_env_out

 The NULL-terminated environment vector to use when executing the command. The

 plugin is responsible for allocating and populating the vector.

 errstr

 If the check_policy() function returns a value other than 1, the plugin may

 store a message describing the failure or error in errstr. The sudo front-end

 will then pass this value to any registered audit plugins. The string stored in

 errstr must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 list

 int (*list)(int argc, char * const argv[], int verbose, Page 21/61

 const char *list_user, const char **errstr);

 List available privileges for the invoking user. Returns 1 on success, 0 on failure,

 and -1 on error. On error, the plugin may optionally call the conversation() or

 plugin_printf() function with SUDO_CONF_ERROR_MSG to present additional error informa?

 tion to the user.

 Privileges should be output via the conversation() or plugin_printf() function using

 SUDO_CONV_INFO_MSG.

 The function arguments are as follows:

 argc The number of elements in argv, not counting the final NULL pointer.

 argv If non-NULL, an argument vector describing a command the user wishes to check

 against the policy in the same form as what would be passed to the execve(2)

 system call. If the command is permitted by the policy, the fully-qualified

 path to the command should be displayed along with any command line arguments.

 verbose

 Flag indicating whether to list in verbose mode or not.

 list_user

 The name of a different user to list privileges for if the policy allows it. If

 NULL, the plugin should list the privileges of the invoking user.

 errstr

 If the list() function returns a value other than 1, the plugin may store a mes?

 sage describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 validate

 int (*validate)(const char **errstr);

 The validate() function is called when sudo is run with the -v option. For policy

 plugins such as sudoers that cache authentication credentials, this function will val?

 idate and cache the credentials.

 The validate() function should be NULL if the plugin does not support credential

 caching. Page 22/61

 Returns 1 on success, 0 on failure, and -1 on error. On error, the plugin may option?

 ally call the conversation() or plugin_printf() function with SUDO_CONF_ERROR_MSG to

 present additional error information to the user.

 The function arguments are as follows:

 errstr

 If the validate() function returns a value other than 1, the plugin may store a

 message describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 invalidate

 void (*invalidate)(int remove);

 The invalidate() function is called when sudo is run with the -k or -K option. For

 policy plugins such as sudoers that cache authentication credentials, this function

 will invalidate the credentials. If the remove flag is set, the plugin may remove the

 credentials instead of simply invalidating them.

 The invalidate() function should be NULL if the plugin does not support credential

 caching.

 init_session

 int (*init_session)(struct passwd *pwd, char **user_env_out[]);

 The init_session() function is called before sudo sets up the execution environment

 for the command. It is run in the parent sudo process and before any user-ID or

 group-ID changes. This can be used to perform session setup that is not supported by

 command_info, such as opening the PAM session. The close() function can be used to

 tear down the session that was opened by init_session.

 The pwd argument points to a passwd struct for the user the command will be run as if

 the user-ID the command will run as was found in the password database, otherwise it

 will be NULL.

 The user_env_out argument points to the environment the command will run in, in the

 form of a NULL-terminated vector of ?name=value? strings. This is the same string

 passed back to the front-end via the Policy Plugin's user_env_out parameter. If the Page 23/61

 init_session() function needs to modify the user environment, it should update the

 pointer stored in user_env_out. The expected use case is to merge the contents of the

 PAM environment (if any) with the contents of user_env_out. NOTE: the user_env_out

 parameter is only available starting with API version 1.2. A plugin must check the

 API version specified by the sudo front-end before using user_env_out. Failure to do

 so may result in a crash.

 Returns 1 on success, 0 on failure, and -1 on error. On error, the plugin may option?

 ally call the conversation() or plugin_printf() function with SUDO_CONF_ERROR_MSG to

 present additional error information to the user.

 register_hooks

 void (*register_hooks)(int version,

 int (*register_hook)(struct sudo_hook *hook));

 The register_hooks() function is called by the sudo front-end to register any hooks

 the plugin needs. If the plugin does not support hooks, register_hooks should be set

 to the NULL pointer.

 The version argument describes the version of the hooks API supported by the sudo

 front-end.

 The register_hook() function should be used to register any supported hooks the plugin

 needs. It returns 0 on success, 1 if the hook type is not supported, and -1 if the

 major version in struct hook does not match the front-end's major hook API version.

 See the Hook function API section below for more information about hooks.

 NOTE: the register_hooks() function is only available starting with API version 1.2.

 If the sudo front-end doesn't support API version 1.2 or higher, register_hooks will

 not be called.

 deregister_hooks

 void (*deregister_hooks)(int version,

 int (*deregister_hook)(struct sudo_hook *hook));

 The deregister_hooks() function is called by the sudo front-end to deregister any

 hooks the plugin has registered. If the plugin does not support hooks,

 deregister_hooks should be set to the NULL pointer.

 The version argument describes the version of the hooks API supported by the sudo

 front-end.

 The deregister_hook() function should be used to deregister any hooks that were put in Page 24/61

 place by the register_hook() function. If the plugin tries to deregister a hook that

 the front-end does not support, deregister_hook will return an error.

 See the Hook function API section below for more information about hooks.

 NOTE: the deregister_hooks() function is only available starting with API version 1.2.

 If the sudo front-end doesn't support API version 1.2 or higher, deregister_hooks will

 not be called.

 event_alloc

 struct sudo_plugin_event * (*event_alloc)(void);

 The event_alloc() function is used to allocate a struct sudo_plugin_event which pro?

 vides access to the main sudo event loop. Unlike the other fields, the event_alloc()

 pointer is filled in by the sudo front-end, not by the plugin.

 See the Event API section below for more information about events.

 NOTE: the event_alloc() function is only available starting with API version 1.15. If

 the sudo front-end doesn't support API version 1.15 or higher, event_alloc() will not

 be set.

 errstr

 If the init_session() function returns a value other than 1, the plugin may store a

 message describing the failure or error in errstr. The sudo front-end will then pass

 this value to any registered audit plugins. The string stored in errstr must remain

 valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A plugin

 must check the API version specified by the sudo front-end before using errstr. Fail?

 ure to do so may result in a crash.

 Policy Plugin Version Macros

 /* Plugin API version major/minor. */

 #define SUDO_API_VERSION_MAJOR 1

 #define SUDO_API_VERSION_MINOR 13

 #define SUDO_API_MKVERSION(x, y) ((x << 16) | y)

 #define SUDO_API_VERSION SUDO_API_MKVERSION(SUDO_API_VERSION_MAJOR,\

 SUDO_API_VERSION_MINOR)

 /* Getters and setters for API version */

 #define SUDO_API_VERSION_GET_MAJOR(v) ((v) >> 16)

 #define SUDO_API_VERSION_GET_MINOR(v) ((v) & 0xffff) Page 25/61

 #define SUDO_API_VERSION_SET_MAJOR(vp, n) do { \

 (vp) = ((vp) & 0x0000ffff) | ((n) << 16); \

 } while(0)

 #define SUDO_API_VERSION_SET_MINOR(vp, n) do { \

 (vp) = ((vp) & 0xffff0000) | (n); \

 } while(0)

 I/O plugin API

 struct io_plugin {

 #define SUDO_IO_PLUGIN 2

 unsigned int type; /* always SUDO_IO_PLUGIN */

 unsigned int version; /* always SUDO_API_VERSION */

 int (*open)(unsigned int version, sudo_conv_t conversation,

 sudo_printf_t plugin_printf, char * const settings[],

 char * const user_info[], char * const command_info[],

 int argc, char * const argv[], char * const user_env[],

 char * const plugin_options[], const char **errstr);

 void (*close)(int exit_status, int error); /* wait status or error */

 int (*show_version)(int verbose);

 int (*log_ttyin)(const char *buf, unsigned int len,

 const char **errstr);

 int (*log_ttyout)(const char *buf, unsigned int len,

 const char **errstr);

 int (*log_stdin)(const char *buf, unsigned int len,

 const char **errstr);

 int (*log_stdout)(const char *buf, unsigned int len,

 const char **errstr);

 int (*log_stderr)(const char *buf, unsigned int len,

 const char **errstr);

 void (*register_hooks)(int version,

 int (*register_hook)(struct sudo_hook *hook));

 void (*deregister_hooks)(int version,

 int (*deregister_hook)(struct sudo_hook *hook));

 int (*change_winsize)(unsigned int lines, unsigned int cols, Page 26/61

 const char **errstr);

 int (*log_suspend)(int signo, const char **errstr);

 struct sudo_plugin_event * (*event_alloc)(void);

 };

 When an I/O plugin is loaded, sudo runs the command in a pseudo-terminal. This makes it

 possible to log the input and output from the user's session. If any of the standard input,

 standard output, or standard error do not correspond to a tty, sudo will open a pipe to cap?

 ture the I/O for logging before passing it on.

 The log_ttyin function receives the raw user input from the terminal device (note that this

 will include input even when echo is disabled, such as when a password is read). The

 log_ttyout function receives output from the pseudo-terminal that is suitable for replaying

 the user's session at a later time. The log_stdin(), log_stdout(), and log_stderr() func?

 tions are only called if the standard input, standard output, or standard error respectively

 correspond to something other than a tty.

 Any of the logging functions may be set to the NULL pointer if no logging is to be per?

 formed. If the open function returns 0, no I/O will be sent to the plugin.

 If a logging function returns an error (-1), the running command will be terminated and all

 of the plugin's logging functions will be disabled. Other I/O logging plugins will still

 receive any remaining input or output that has not yet been processed.

 If an input logging function rejects the data by returning 0, the command will be terminated

 and the data will not be passed to the command, though it will still be sent to any other

 I/O logging plugins. If an output logging function rejects the data by returning 0, the

 command will be terminated and the data will not be written to the terminal, though it will

 still be sent to any other I/O logging plugins.

 The audit_plugin struct has the following fields:

 type The type field should always be set to SUDO_IO_PLUGIN.

 version

 The version field should be set to SUDO_API_VERSION.

 This allows sudo to determine the API version the plugin was built against.

 open

 int (*open)(unsigned int version, sudo_conv_t conversation,

 sudo_printf_t plugin_printf, char * const settings[],

 char * const user_info[], char * const command_info[], Page 27/61

 int argc, char * const argv[], char * const user_env[],

 char * const plugin_options[]);

 The open() function is run before the log_ttyin(), log_ttyout(), log_stdin(),

 log_stdout(), log_stderr(), log_suspend(), change_winsize(), or show_version() func?

 tions are called. It is only called if the version is being requested or if the pol?

 icy plugin's check_policy() function has returned successfully. It returns 1 on suc?

 cess, 0 on failure, -1 if a general error occurred, or -2 if there was a usage error.

 In the latter case, sudo will print a usage message before it exits. If an error oc?

 curs, the plugin may optionally call the conversation() or plugin_printf() function

 with SUDO_CONF_ERROR_MSG to present additional error information to the user.

 The function arguments are as follows:

 version

 The version passed in by sudo allows the plugin to determine the major and minor

 version number of the plugin API supported by sudo.

 conversation

 A pointer to the conversation() function that may be used by the show_version()

 function to display version information (see show_version() below). The

 conversation() function may also be used to display additional error message to

 the user. The conversation() function returns 0 on success and -1 on failure.

 plugin_printf

 A pointer to a printf()-style function that may be used by the show_version()

 function to display version information (see show_version below). The

 plugin_printf() function may also be used to display additional error message to

 the user. The plugin_printf() function returns number of characters printed on

 success and -1 on failure.

 settings

 A vector of user-supplied sudo settings in the form of ?name=value? strings.

 The vector is terminated by a NULL pointer. These settings correspond to op?

 tions the user specified when running sudo. As such, they will only be present

 when the corresponding option has been specified on the command line.

 When parsing settings, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible settings. Page 28/61

 user_info

 A vector of information about the user running the command in the form of

 ?name=value? strings. The vector is terminated by a NULL pointer.

 When parsing user_info, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible strings.

 command_info

 A vector of information describing the command being run in the form of

 ?name=value? strings. The vector is terminated by a NULL pointer.

 When parsing command_info, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible strings.

 argc The number of elements in argv, not counting the final NULL pointer. It can be

 zero, when sudo is called with -V.

 argv If non-NULL, an argument vector describing a command the user wishes to run in

 the same form as what would be passed to the execve(2) system call.

 user_env

 The user's environment in the form of a NULL-terminated vector of ?name=value?

 strings.

 When parsing user_env, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 plugin_options

 Any (non-comment) strings immediately after the plugin path are treated as argu?

 ments to the plugin. These arguments are split on a white space boundary and

 are passed to the plugin in the form of a NULL-terminated array of strings. If

 no arguments were specified, plugin_options will be the NULL pointer.

 NOTE: the plugin_options parameter is only available starting with API version

 1.2. A plugin must check the API version specified by the sudo front-end before

 using plugin_options. Failure to do so may result in a crash.

 errstr

 If the open() function returns a value other than 1, the plugin may store a mes?

 sage describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr Page 29/61

 must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 close

 void (*close)(int exit_status, int error);

 The close() function is called when sudo is finished, shortly before it exits.

 The function arguments are as follows:

 exit_status

 The command's exit status, as returned by the wait(2) system call, or zero if no

 command was run. The value of exit_status is undefined if error is non-zero.

 error

 If the command could not be executed, this is set to the value of errno set by

 the execve(2) system call. If the command was successfully executed, the value

 of error is zero.

 show_version

 int (*show_version)(int verbose);

 The show_version() function is called by sudo when the user specifies the -V option.

 The plugin may display its version information to the user via the conversation() or

 plugin_printf() function using SUDO_CONV_INFO_MSG.

 Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was

 a usage error, although the return value is currently ignored.

 log_ttyin

 int (*log_ttyin)(const char *buf, unsigned int len,

 const char **errstr);

 The log_ttyin() function is called whenever data can be read from the user but before

 it is passed to the running command. This allows the plugin to reject data if it

 chooses to (for instance if the input contains banned content). Returns 1 if the data

 should be passed to the command, 0 if the data is rejected (which will terminate the

 running command), or -1 if an error occurred.

 The function arguments are as follows:

 buf The buffer containing user input.

 len The length of buf in bytes. Page 30/61

 errstr

 If the log_ttyin() function returns a value other than 1, the plugin may store a

 message describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 log_ttyout

 int (*log_ttyout)(const char *buf, unsigned int len,

 const char **errstr);

 The log_ttyout() function is called whenever data can be read from the command but be?

 fore it is written to the user's terminal. This allows the plugin to reject data if

 it chooses to (for instance if the output contains banned content). Returns 1 if the

 data should be passed to the user, 0 if the data is rejected (which will terminate the

 running command), or -1 if an error occurred.

 The function arguments are as follows:

 buf The buffer containing command output.

 len The length of buf in bytes.

 errstr

 If the log_ttyout() function returns a value other than 1, the plugin may store

 a message describing the failure or error in errstr. The sudo front-end will

 then pass this value to any registered audit plugins. The string stored in

 errstr must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 log_stdin

 int (*log_stdin)(const char *buf, unsigned int len,

 const char **errstr);

 The log_stdin() function is only used if the standard input does not correspond to a

 tty device. It is called whenever data can be read from the standard input but before

 it is passed to the running command. This allows the plugin to reject data if it Page 31/61

 chooses to (for instance if the input contains banned content). Returns 1 if the data

 should be passed to the command, 0 if the data is rejected (which will terminate the

 running command), or -1 if an error occurred.

 The function arguments are as follows:

 buf The buffer containing user input.

 len The length of buf in bytes.

 errstr

 If the log_stdin() function returns a value other than 1, the plugin may store a

 message describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 log_stdout

 int (*log_stdout)(const char *buf, unsigned int len,

 const char **errstr);

 The log_stdout() function is only used if the standard output does not correspond to a

 tty device. It is called whenever data can be read from the command but before it is

 written to the standard output. This allows the plugin to reject data if it chooses

 to (for instance if the output contains banned content). Returns 1 if the data should

 be passed to the user, 0 if the data is rejected (which will terminate the running

 command), or -1 if an error occurred.

 The function arguments are as follows:

 buf The buffer containing command output.

 len The length of buf in bytes.

 errstr

 If the log_stdout() function returns a value other than 1, the plugin may store

 a message describing the failure or error in errstr. The sudo front-end will

 then pass this value to any registered audit plugins. The string stored in

 errstr must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using Page 32/61

 errstr. Failure to do so may result in a crash.

 log_stderr

 int (*log_stderr)(const char *buf, unsigned int len,

 const char **errstr);

 The log_stderr() function is only used if the standard error does not correspond to a

 tty device. It is called whenever data can be read from the command but before it is

 written to the standard error. This allows the plugin to reject data if it chooses to

 (for instance if the output contains banned content). Returns 1 if the data should be

 passed to the user, 0 if the data is rejected (which will terminate the running com?

 mand), or -1 if an error occurred.

 The function arguments are as follows:

 buf The buffer containing command output.

 len The length of buf in bytes.

 errstr

 If the log_stderr() function returns a value other than 1, the plugin may store

 a message describing the failure or error in errstr. The sudo front-end will

 then pass this value to any registered audit plugins. The string stored in

 errstr must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 register_hooks

 See the Policy plugin API section for a description of register_hooks.

 deregister_hooks

 See the Policy plugin API section for a description of deregister_hooks.

 change_winsize

 int (*change_winsize)(unsigned int lines, unsigned int cols,

 const char **errstr);

 The change_winsize() function is called whenever the window size of the terminal

 changes from the initial values specified in the user_info list. Returns -1 if an er?

 ror occurred, in which case no further calls to change_winsize() will be made,

 The function arguments are as follows:

 lines Page 33/61

 The number of lines (rows) in the re-sized terminal.

 cols The number of columns in the re-sized terminal.

 errstr

 If the change_winsize() function returns a value other than 1, the plugin may

 store a message describing the failure or error in errstr. The sudo front-end

 will then pass this value to any registered audit plugins. The string stored in

 errstr must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 log_suspend

 int (*log_suspend)(int signo, const char **errstr);

 The log_suspend() function is called whenever a command is suspended or resumed. Log?

 ging this information makes it possible to skip the period of time when the command

 was suspended during playback of a session. Returns -1 if an error occurred, in which

 case no further calls to log_suspend() will be made,

 The function arguments are as follows:

 signo

 The signal that caused the command to be suspended, or SIGCONT if the command

 was resumed.

 errstr

 If the log_suspend() function returns a value other than 1, the plugin may store

 a message describing the failure or error in errstr. The sudo front-end will

 then pass this value to any registered audit plugins. The string stored in

 errstr must remain valid until the plugin's close() function is called.

 NOTE: the errstr parameter is only available starting with API version 1.15. A

 plugin must check the API version specified by the sudo front-end before using

 errstr. Failure to do so may result in a crash.

 event_alloc

 struct sudo_plugin_event * (*event_alloc)(void);

 The event_alloc() function is used to allocate a struct sudo_plugin_event which

 provides access to the main sudo event loop. Unlike the other fields, the

 event_alloc() pointer is filled in by the sudo front-end, not by the plugin. Page 34/61

 See the Event API section below for more information about events.

 NOTE: the event_alloc() function is only available starting with API version

 1.15. If the sudo front-end doesn't support API version 1.15 or higher,

 event_alloc() will not be set.

 I/O Plugin Version Macros

 Same as for the Policy plugin API.

 Audit plugin API

 /* Audit plugin close function status types. */

 #define SUDO_PLUGIN_NO_STATUS 0

 #define SUDO_PLUGIN_WAIT_STATUS 1

 #define SUDO_PLUGIN_EXEC_ERROR 2

 #define SUDO_PLUGIN_SUDO_ERROR 3

 #define SUDO_AUDIT_PLUGIN 3

 struct audit_plugin {

 unsigned int type; /* always SUDO_AUDIT_PLUGIN */

 unsigned int version; /* always SUDO_API_VERSION */

 int (*open)(unsigned int version, sudo_conv_t conversation,

 sudo_printf_t sudo_printf, char * const settings[],

 char * const user_info[], int submit_optind,

 char * const submit_argv[], char * const submit_envp[],

 char * const plugin_options[], const char **errstr);

 void (*close)(int status_type, int status);

 int (*accept)(const char *plugin_name,

 unsigned int plugin_type, char * const command_info[],

 char * const run_argv[], char * const run_envp[],

 const char **errstr);

 int (*reject)(const char *plugin_name, unsigned int plugin_type,

 const char *audit_msg, char * const command_info[],

 const char **errstr);

 int (*error)(const char *plugin_name, unsigned int plugin_type,

 const char *audit_msg, char * const command_info[],

 const char **errstr);

 int (*show_version)(int verbose); Page 35/61

 void (*register_hooks)(int version,

 int (*register_hook)(struct sudo_hook *hook));

 void (*deregister_hooks)(int version,

 int (*deregister_hook)(struct sudo_hook *hook));

 struct sudo_plugin_event * (*event_alloc)(void);

 }

 An audit plugin can be used to log successful and unsuccessful attempts to run sudo indepen?

 dent of the policy or any I/O plugins. Multiple audit plugins may be specified in

 sudo.conf(5).

 The audit_plugin struct has the following fields:

 type The type field should always be set to SUDO_AUDIT_PLUGIN.

 version

 The version field should be set to SUDO_API_VERSION.

 This allows sudo to determine the API version the plugin was built against.

 open

 int (*open)(unsigned int version, sudo_conv_t conversation,

 sudo_printf_t sudo_printf, char * const settings[],

 char * const user_info[], int submit_optind,

 char * const submit_argv[], char * const submit_envp[],

 char * const plugin_options[], const char **errstr);

 The audit open() function is run before any other sudo plugin API functions. This

 makes it possible to audit failures in the other plugins. It returns 1 on success, 0

 on failure, -1 if a general error occurred, or -2 if there was a usage error. In the

 latter case, sudo will print a usage message before it exits. If an error occurs, the

 plugin may optionally call the conversation() or plugin_printf() function with

 SUDO_CONF_ERROR_MSG to present additional error information to the user.

 The function arguments are as follows:

 version

 The version passed in by sudo allows the plugin to determine the major and minor

 version number of the plugin API supported by sudo.

 conversation

 A pointer to the conversation() function that may be used by the show_version()

 function to display version information (see show_version() below). The Page 36/61

 conversation() function may also be used to display additional error message to

 the user. The conversation() function returns 0 on success, and -1 on failure.

 plugin_printf

 A pointer to a printf()-style function that may be used by the show_version()

 function to display version information (see show_version below). The

 plugin_printf() function may also be used to display additional error message to

 the user. The plugin_printf() function returns number of characters printed on

 success and -1 on failure.

 settings

 A vector of user-supplied sudo settings in the form of ?name=value? strings.

 The vector is terminated by a NULL pointer. These settings correspond to op?

 tions the user specified when running sudo. As such, they will only be present

 when the corresponding option has been specified on the command line.

 When parsing settings, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible settings.

 user_info

 A vector of information about the user running the command in the form of

 ?name=value? strings. The vector is terminated by a NULL pointer.

 When parsing user_info, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible strings.

 submit_optind

 The index into submit_argv that corresponds to the first entry that is not a

 command line option. If submit_argv only consists of options, which may be the

 case with the -l or -v options, submit_argv[submit_optind] will evaluate to the

 NULL pointer.

 submit_argv

 The argument vector sudo was invoked with, including all command line options.

 The submit_optind argument can be used to determine the end of the command line

 options.

 submit_envp

 The invoking user's environment in the form of a NULL-terminated vector of Page 37/61

 ?name=value? strings.

 When parsing submit_envp, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 plugin_options

 Any (non-comment) strings immediately after the plugin path are treated as argu?

 ments to the plugin. These arguments are split on a white space boundary and

 are passed to the plugin in the form of a NULL-terminated array of strings. If

 no arguments were specified, plugin_options will be the NULL pointer.

 errstr

 If the open() function returns a value other than 1, the plugin may store a mes?

 sage describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 close

 void (*close)(int status_type, int status);

 The close() function is called when sudo is finished, shortly before it exits.

 The function arguments are as follows:

 status_type

 The type of status being passed. One of SUDO_PLUGIN_NO_STATUS,

 SUDO_PLUGIN_WAIT_STATUS, SUDO_PLUGIN_EXEC_ERROR or SUDO_PLUGIN_SUDO_ERROR.

 status

 Depending on the value of status_type, this value is either ignored, the com?

 mand's exit status as returned by the wait(2) system call, the value of errno

 set by the execve(2) system call, or the value of errno resulting from an error

 in the sudo front-end.

 accept

 int (*accept)(const char *plugin_name, unsigned int plugin_type,

 char * const command_info[], char * const run_argv[],

 char * const run_envp[], const char **errstr);

 The accept() function is called when a command or action is accepted by a policy or

 approval plugin. The function arguments are as follows:

 plugin_name

 The name of the plugin that accepted the command or ?sudo? for the sudo front- Page 38/61

 end.

 plugin_type

 The type of plugin that accepted the command, currently either

 SUDO_POLICY_PLUGIN, SUDO_POLICY_APPROVAL, or SUDO_FRONT_END. The accept() func?

 tion is called multiple times--once for each policy or approval plugin that suc?

 ceeds and once for the sudo front-end. When called on behalf of the sudo front-

 end, command_info may include information from an I/O logging plugin as well.

 Typically, an audit plugin is interested in either the accept status from the

 sudo front-end or from the various policy and approval plugins, but not both.

 It is possible for the policy plugin to accept a command that is later rejected

 by an approval plugin, in which case the audit plugin's accept() and reject()

 functions will both be called.

 command_info

 An optional vector of information describing the command being run in the form

 of ?name=value? strings. The vector is terminated by a NULL pointer.

 When parsing command_info, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible strings.

 run_argv

 A NULL-terminated argument vector describing a command that will be run in the

 same form as what would be passed to the execve(2) system call.

 run_envp

 The environment the command will be run with in the form of a NULL-terminated

 vector of ?name=value? strings.

 When parsing run_envp, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 errstr

 If the accept() function returns a value other than 1, the plugin may store a

 message describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 reject

 int (*reject)(const char *plugin_name, unsigned int plugin_type, Page 39/61

 const char *audit_msg, char * const command_info[],

 const char **errstr);

 The reject() function is called when a command or action is rejected by a plugin. The

 function arguments are as follows:

 plugin_name

 The name of the plugin that rejected the command.

 plugin_type

 The type of plugin that rejected the command, currently either

 SUDO_POLICY_PLUGIN, SUDO_APPROVAL_PLUGIN, or SUDO_IO_PLUGIN.

 Unlike the accept() function, the reject() function is not called on behalf of

 the sudo front-end.

 audit_msg

 An optional string describing the reason the command was rejected by the plugin.

 If the plugin did not provide a reason, audit_msg will be the NULL pointer.

 command_info

 An optional vector of information describing the command being run in the form

 of ?name=value? strings. The vector is terminated by a NULL pointer.

 When parsing command_info, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible strings.

 errstr

 If the reject() function returns a value other than 1, the plugin may store a

 message describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 error

 int (*error)(const char *plugin_name, unsigned int plugin_type,

 const char *audit_msg, char * const command_info[],

 const char **errstr);

 The error() function is called when a plugin or the sudo front-end returns an error.

 The function arguments are as follows:

 plugin_name

 The name of the plugin that generated the error or ?sudo? for the sudo front- Page 40/61

 end.

 plugin_type

 The type of plugin that generated the error, or SUDO_FRONT_END for the sudo

 front-end.

 audit_msg

 An optional string describing the plugin error. If the plugin did not provide a

 description, audit_msg will be the NULL pointer.

 command_info

 An optional vector of information describing the command being run in the form

 of ?name=value? strings. The vector is terminated by a NULL pointer.

 When parsing command_info, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible strings.

 errstr

 If the error() function returns a value other than 1, the plugin may store a

 message describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 show_version

 int (*show_version)(int verbose);

 The show_version() function is called by sudo when the user specifies the -V option.

 The plugin may display its version information to the user via the conversation() or

 plugin_printf() function using SUDO_CONV_INFO_MSG. If the user requests detailed ver?

 sion information, the verbose flag will be set.

 Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was

 a usage error, although the return value is currently ignored.

 register_hooks

 See the Policy plugin API section for a description of register_hooks.

 deregister_hooks

 See the Policy plugin API section for a description of deregister_hooks.

 event_alloc

 struct sudo_plugin_event * (*event_alloc)(void);

 The event_alloc() function is used to allocate a struct sudo_plugin_event which pro? Page 41/61

 vides access to the main sudo event loop. Unlike the other fields, the event_alloc()

 pointer is filled in by the sudo front-end, not by the plugin.

 See the Event API section below for more information about events.

 NOTE: the event_alloc() function is only available starting with API version 1.17. If

 the sudo front-end doesn't support API version 1.17 or higher, event_alloc() will not

 be set.

 Approval plugin API

 struct approval_plugin {

 #define SUDO_APPROVAL_PLUGIN 4

 unsigned int type; /* always SUDO_APPROVAL_PLUGIN */

 unsigned int version; /* always SUDO_API_VERSION */

 int (*open)(unsigned int version, sudo_conv_t conversation,

 sudo_printf_t sudo_printf, char * const settings[],

 char * const user_info[], int submit_optind,

 char * const submit_argv[], char * const submit_envp[],

 char * const plugin_options[], const char **errstr);

 void (*close)(void);

 int (*check)(char * const command_info[], char * const run_argv[],

 char * const run_envp[], const char **errstr);

 int (*show_version)(int verbose);

 };

 An approval plugin can be used to apply extra constraints after a command has been accepted

 by the policy plugin. Unlike the other plugin types, it does not remain open until the com?

 mand completes. The plugin is opened before a call to check() or show_version() and closed

 shortly thereafter (audit plugin functions must be called before the plugin is closed).

 Multiple approval plugins may be specified in sudo.conf(5).

 The approval_plugin struct has the following fields:

 type The type field should always be set to SUDO_APPROVAL_PLUGIN.

 version

 The version field should be set to SUDO_API_VERSION.

 This allows sudo to determine the API version the plugin was built against.

 open

 int (*open)(unsigned int version, sudo_conv_t conversation, Page 42/61

 sudo_printf_t sudo_printf, char * const settings[],

 char * const user_info[], int submit_optind,

 char * const submit_argv[], char * const submit_envp[],

 char * const plugin_options[], const char **errstr);

 The approval open() function is run immediately before a call to the plugin's check()

 or show_version() functions. It is only called if the version is being requested or

 if the policy plugin's check_policy() function has returned successfully. It returns

 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was a usage

 error. In the latter case, sudo will print a usage message before it exits. If an

 error occurs, the plugin may optionally call the conversation() or plugin_printf()

 function with SUDO_CONF_ERROR_MSG to present additional error information to the user.

 The function arguments are as follows:

 version

 The version passed in by sudo allows the plugin to determine the major and minor

 version number of the plugin API supported by sudo.

 conversation

 A pointer to the conversation() function that can be used by the plugin to in?

 teract with the user (see Conversation API for details). Returns 0 on success

 and -1 on failure.

 plugin_printf

 A pointer to a printf()-style function that may be used to display informational

 or error messages (see Conversation API for details). Returns the number of

 characters printed on success and -1 on failure.

 settings

 A vector of user-supplied sudo settings in the form of ?name=value? strings.

 The vector is terminated by a NULL pointer. These settings correspond to op?

 tions the user specified when running sudo. As such, they will only be present

 when the corresponding option has been specified on the command line.

 When parsing settings, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible settings.

 user_info

 A vector of information about the user running the command in the form of Page 43/61

 ?name=value? strings. The vector is terminated by a NULL pointer.

 When parsing user_info, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible strings.

 submit_optind

 The index into submit_argv that corresponds to the first entry that is not a

 command line option. If submit_argv only consists of options, which may be the

 case with the -l or -v options, submit_argv[submit_optind] will evaluate to the

 NULL pointer.

 submit_argv

 The argument vector sudo was invoked with, including all command line options.

 The submit_optind argument can be used to determine the end of the command line

 options.

 submit_envp

 The invoking user's environment in the form of a NULL-terminated vector of

 ?name=value? strings.

 When parsing submit_envp, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 plugin_options

 Any (non-comment) strings immediately after the plugin path are treated as argu?

 ments to the plugin. These arguments are split on a white space boundary and

 are passed to the plugin in the form of a NULL-terminated array of strings. If

 no arguments were specified, plugin_options will be the NULL pointer.

 errstr

 If the open() function returns a value other than 1, the plugin may store a mes?

 sage describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 close

 void (*close)(void);

 The close() function is called after the approval plugin's check() or show_version()

 functions have been called. It takes no arguments. The close() function is typically

 used to perform plugin-specific cleanup, such as the freeing of memory objects allo? Page 44/61

 cated by the plugin. If the plugin does not need to perform any cleanup, close() may

 be set to the NULL pointer.

 check

 int (*check)(char * const command_info[], char * const run_argv[],

 char * const run_envp[], const char **errstr);

 The approval check() function is run after the policy plugin check_policy() function

 and before any I/O logging plugins. If multiple approval plugins are loaded, they

 must all succeed for the command to be allowed. It returns 1 on success, 0 on fail?

 ure, -1 if a general error occurred, or -2 if there was a usage error. In the latter

 case, sudo will print a usage message before it exits. If an error occurs, the plugin

 may optionally call the conversation() or plugin_printf() function with

 SUDO_CONF_ERROR_MSG to present additional error information to the user.

 The function arguments are as follows:

 command_info

 A vector of information describing the command being run in the form of

 ?name=value? strings. The vector is terminated by a NULL pointer.

 When parsing command_info, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 See the Policy plugin API section for a list of all possible strings.

 run_argv

 A NULL-terminated argument vector describing a command that will be run in the

 same form as what would be passed to the execve(2) system call.

 run_envp

 The environment the command will be run with in the form of a NULL-terminated

 vector of ?name=value? strings.

 When parsing run_envp, the plugin should split on the first equal sign (?=?)

 since the name field will never include one itself but the value might.

 errstr

 If the open() function returns a value other than 1, the plugin may store a mes?

 sage describing the failure or error in errstr. The sudo front-end will then

 pass this value to any registered audit plugins. The string stored in errstr

 must remain valid until the plugin's close() function is called.

 show_version Page 45/61

 int (*show_version)(int verbose);

 The show_version() function is called by sudo when the user specifies the -V option.

 The plugin may display its version information to the user via the conversation() or

 plugin_printf() function using SUDO_CONV_INFO_MSG. If the user requests detailed ver?

 sion information, the verbose flag will be set.

 Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was

 a usage error, although the return value is currently ignored.

 Signal handlers

 The sudo front-end installs default signal handlers to trap common signals while the plugin

 functions are run. The following signals are trapped by default before the command is exe?

 cuted:

 ? SIGALRM

 ? SIGHUP

 ? SIGINT

 ? SIGPIPE

 ? SIGQUIT

 ? SIGTERM

 ? SIGTSTP

 ? SIGUSR1

 ? SIGUSR2

 If a fatal signal is received before the command is executed, sudo will call the plugin's

 close() function with an exit status of 128 plus the value of the signal that was received.

 This allows for consistent logging of commands killed by a signal for plugins that log such

 information in their close() function. An exception to this is SIGPIPE, which is ignored

 until the command is executed.

 A plugin may temporarily install its own signal handlers but must restore the original han?

 dler before the plugin function returns.

 Hook function API

 Beginning with plugin API version 1.2, it is possible to install hooks for certain functions

 called by the sudo front-end.

 Currently, the only supported hooks relate to the handling of environment variables. Hooks

 can be used to intercept attempts to get, set, or remove environment variables so that these

 changes can be reflected in the version of the environment that is used to execute a com? Page 46/61

 mand. A future version of the API will support hooking internal sudo front-end functions as

 well.

 Hook structure

 Hooks in sudo are described by the following structure:

 typedef int (*sudo_hook_fn_t)();

 struct sudo_hook {

 unsigned int hook_version;

 unsigned int hook_type;

 sudo_hook_fn_t hook_fn;

 void *closure;

 };

 The sudo_hook structure has the following fields:

 hook_version

 The hook_version field should be set to SUDO_HOOK_VERSION.

 hook_type

 The hook_type field may be one of the following supported hook types:

 SUDO_HOOK_SETENV

 The C library setenv(3) function. Any registered hooks will run before the C

 library implementation. The hook_fn field should be a function that matches the

 following typedef:

 typedef int (*sudo_hook_fn_setenv_t)(const char *name,

 const char *value, int overwrite, void *closure);

 If the registered hook does not match the typedef the results are unspecified.

 SUDO_HOOK_UNSETENV

 The C library unsetenv(3) function. Any registered hooks will run before the C

 library implementation. The hook_fn field should be a function that matches the

 following typedef:

 typedef int (*sudo_hook_fn_unsetenv_t)(const char *name,

 void *closure);

 SUDO_HOOK_GETENV

 The C library getenv(3) function. Any registered hooks will run before the C

 library implementation. The hook_fn field should be a function that matches the

 following typedef: Page 47/61

 typedef int (*sudo_hook_fn_getenv_t)(const char *name,

 char **value, void *closure);

 If the registered hook does not match the typedef the results are unspecified.

 SUDO_HOOK_PUTENV

 The C library putenv(3) function. Any registered hooks will run before the C

 library implementation. The hook_fn field should be a function that matches the

 following typedef:

 typedef int (*sudo_hook_fn_putenv_t)(char *string,

 void *closure);

 If the registered hook does not match the typedef the results are unspecified.

 hook_fn

 sudo_hook_fn_t hook_fn;

 The hook_fn field should be set to the plugin's hook implementation. The actual func?

 tion arguments will vary depending on the hook_type (see hook_type above). In all

 cases, the closure field of struct sudo_hook is passed as the last function parameter.

 This can be used to pass arbitrary data to the plugin's hook implementation.

 The function return value may be one of the following:

 SUDO_HOOK_RET_ERROR

 The hook function encountered an error.

 SUDO_HOOK_RET_NEXT

 The hook completed without error, go on to the next hook (including the system

 implementation if applicable). For example, a getenv(3) hook might return

 SUDO_HOOK_RET_NEXT if the specified variable was not found in the private copy

 of the environment.

 SUDO_HOOK_RET_STOP

 The hook completed without error, stop processing hooks for this invocation.

 This can be used to replace the system implementation. For example, a setenv

 hook that operates on a private copy of the environment but leaves environ un?

 changed.

 Note that it is very easy to create an infinite loop when hooking C library functions. For

 example, a getenv(3) hook that calls the snprintf(3) function may create a loop if the

 snprintf(3) implementation calls getenv(3) to check the locale. To prevent this, you may

 wish to use a static variable in the hook function to guard against nested calls. For exam? Page 48/61

 ple:

 static int in_progress = 0; /* avoid recursion */

 if (in_progress)

 return SUDO_HOOK_RET_NEXT;

 in_progress = 1;

 ...

 in_progress = 0;

 return SUDO_HOOK_RET_STOP;

 Hook API Version Macros

 /* Hook API version major/minor */

 #define SUDO_HOOK_VERSION_MAJOR 1

 #define SUDO_HOOK_VERSION_MINOR 0

 #define SUDO_HOOK_VERSION SUDO_API_MKVERSION(SUDO_HOOK_VERSION_MAJOR,\

 SUDO_HOOK_VERSION_MINOR)

 For getters and setters see the Policy plugin API.

 Event API

 When sudo runs a command, it uses an event loop to service signals and I/O. Events may be

 triggered based on time, a file or socket descriptor becoming ready, or due to receipt of a

 signal. Starting with API version 1.15, it is possible for a plugin to participate in this

 event loop by calling the event_alloc() function.

 Event structure

 Events are described by the following structure:

 typedef void (*sudo_plugin_ev_callback_t)(int fd, int what, void *closure);

 struct sudo_plugin_event {

 int (*set)(struct sudo_plugin_event *pev, int fd, int events,

 sudo_plugin_ev_callback_t callback, void *closure);

 int (*add)(struct sudo_plugin_event *pev, struct timespec *timeout);

 int (*del)(struct sudo_plugin_event *pev);

 int (*pending)(struct sudo_plugin_event *pev, int events,

 struct timespec *ts);

 int (*fd)(struct sudo_plugin_event *pev);

 void (*setbase)(struct sudo_plugin_event *pev, void *base);

 void (*loopbreak)(struct sudo_plugin_event *pev); Page 49/61

 void (*free)(struct sudo_plugin_event *pev);

 };

 The sudo_plugin_event struct contains the following function pointers:

 set()

 int (*set)(struct sudo_plugin_event *pev, int fd, int events,

 sudo_plugin_ev_callback_t callback, void *closure);

 The set() function takes the following arguments:

 struct sudo_plugin_event *pev

 A pointer to the struct sudo_plugin_event itself.

 fd The file or socket descriptor for I/O-based events or the signal number for sig?

 nal events. For time-based events, fd must be -1.

 events

 The following values determine what will trigger the event callback:

 SUDO_PLUGIN_EV_TIMEOUT

 callback is run after the specified timeout expires

 SUDO_PLUGIN_EV_READ

 callback is run when the file descriptor is readable

 SUDO_PLUGIN_EV_WRITE

 callback is run when the file descriptor is writable

 SUDO_PLUGIN_EV_PERSIST

 event is persistent and remains enabled until explicitly deleted

 SUDO_PLUGIN_EV_SIGNAL

 callback is run when the specified signal is received

 The SUDO_PLUGIN_EV_PERSIST flag may be ORed with any of the event types. It is

 also possible to OR SUDO_PLUGIN_EV_READ and SUDO_PLUGIN_EV_WRITE together to run

 the callback when a descriptor is ready to be either read from or written to.

 All other event values are mutually exclusive.

 sudo_plugin_ev_callback_t callback

 typedef void (*sudo_plugin_ev_callback_t)(int fd, int what,

 void *closure);

 The function to call when an event is triggered. The callback() function is run

 with the following arguments:

 fd The file or socket descriptor for I/O-based events or the signal number Page 50/61

 for signal events.

 what The event type that triggered that callback. For events that have multi?

 ple event types (for example SUDO_PLUGIN_EV_READ and SUDO_PLUGIN_EV_WRITE)

 or have an associated timeout, what can be used to determine why the call?

 back was run.

 closure

 The generic pointer that was specified in the set() function.

 closure

 A generic pointer that will be passed to the callback function.

 The set() function returns 1 on success, and -1 if a error occurred.

 add()

 int (*add)(struct sudo_plugin_event *pev, struct timespec *timeout);

 The add() function adds the event pev to sudo's event loop. The event must have pre?

 viously been initialized via the set() function. If the timeout argument is not NULL,

 it should specify a (relative) timeout after which the event will be triggered if the

 main event criteria has not been met. This is often used to implement an I/O timeout

 where the event will fire if a descriptor is not ready within a certain time period.

 If the event is already present in the event loop, its timeout will be adjusted to

 match the new value, if any.

 The add() function returns 1 on success, and -1 if a error occurred.

 del()

 int (*del)(struct sudo_plugin_event *pev);

 The del() function deletes the event pev from sudo's event loop. Deleted events can

 be added back via the add() function.

 The del() function returns 1 on success, and -1 if a error occurred.

 pending()

 int (*pending)(struct sudo_plugin_event *pev, int events,

 struct timespec *ts);

 The pending() function can be used to determine whether one or more events is pending.

 The events argument specifies which events to check for. See the set() function for a

 list of valid event types. If SUDO_PLUGIN_EV_TIMEOUT is specified in events, the

 event has an associated timeout and the ts pointer is non-NULL, it will be filled in

 with the remaining time. Page 51/61

 fd()

 int (*fd)(struct sudo_plugin_event *pev);

 The fd() function returns the descriptor or signal number associated with the event

 pev.

 setbase()

 void (*setbase)(struct sudo_plugin_event *pev, void *base);

 The setbase() function sets the underlying event base for pev to the specified value.

 This can be used to move an event created via event_alloc() to a new event loop allo?

 cated by sudo's event subsystem. If base is NULL, pev's event base is reset to the

 default value, which corresponds to sudo's main event loop. Using this function re?

 quires linking the plugin with the sudo_util library. It is unlikely to be used out?

 side of the sudoers plugin.

 loopbreak()

 void (*loopbreak)(struct sudo_plugin_event *pev);

 The loopbreak() function causes sudo's event loop to exit immediately and the running

 command to be terminated.

 free()

 void (*free)(struct sudo_plugin_event *pev);

 The free() function deletes the event pev from the event loop and frees the memory as?

 sociated with it.

 Remote command execution

 The sudo front-end does not support running remote commands. However, starting with sudo

 1.8.8, the -h option may be used to specify a remote host that is passed to the policy

 plugin. A plugin may also accept a runas_user in the form of ?user@hostname? which will

 work with older versions of sudo. It is anticipated that remote commands will be supported

 by executing a ?helper? program. The policy plugin should setup the execution environment

 such that the sudo front-end will run the helper which, in turn, will connect to the remote

 host and run the command.

 For example, the policy plugin could utilize ssh to perform remote command execution. The

 helper program would be responsible for running ssh with the proper options to use a private

 key or certificate that the remote host will accept and run a program on the remote host

 that would setup the execution environment accordingly.

 Note that remote sudoedit functionality must be handled by the policy plugin, not sudo it? Page 52/61

 self as the front-end has no knowledge that a remote command is being executed. This may be

 addressed in a future revision of the plugin API.

 Conversation API

 If the plugin needs to interact with the user, it may do so via the conversation() function.

 A plugin should not attempt to read directly from the standard input or the user's tty (nei?

 ther of which are guaranteed to exist). The caller must include a trailing newline in msg

 if one is to be printed.

 A printf()-style function is also available that can be used to display informational or er?

 ror messages to the user, which is usually more convenient for simple messages where no use

 input is required.

 Conversation function structures

 The conversation function takes as arguments pointers to the following structures:

 struct sudo_conv_message {

 #define SUDO_CONV_PROMPT_ECHO_OFF 0x0001 /* do not echo user input */

 #define SUDO_CONV_PROMPT_ECHO_ON 0x0002 /* echo user input */

 #define SUDO_CONV_ERROR_MSG 0x0003 /* error message */

 #define SUDO_CONV_INFO_MSG 0x0004 /* informational message */

 #define SUDO_CONV_PROMPT_MASK 0x0005 /* mask user input */

 #define SUDO_CONV_PROMPT_ECHO_OK 0x1000 /* flag: allow echo if no tty */

 #define SUDO_CONV_PREFER_TTY 0x2000 /* flag: use tty if possible */

 int msg_type;

 int timeout;

 const char *msg;

 };

 #define SUDO_CONV_REPL_MAX 1023

 struct sudo_conv_reply {

 char *reply;

 };

 typedef int (*sudo_conv_callback_fn_t)(int signo, void *closure);

 struct sudo_conv_callback {

 unsigned int version;

 void *closure;

 sudo_conv_callback_fn_t on_suspend; Page 53/61

 sudo_conv_callback_fn_t on_resume;

 };

 Pointers to the conversation() and printf()-style functions are passed in to the plugin's

 open() function when the plugin is initialized. The following type definitions can be used

 in the declaration of the open() function:

 typedef int (*sudo_conv_t)(int num_msgs,

 const struct sudo_conv_message msgs[],

 struct sudo_conv_reply replies[], struct sudo_conv_callback *callback);

 typedef int (*sudo_printf_t)(int msg_type, const char *fmt, ...);

 To use the conversation() function, the plugin must pass an array of sudo_conv_message and

 sudo_conv_reply structures. There must be a struct sudo_conv_message and struct

 sudo_conv_reply for each message in the conversation, that is, both arrays must have the

 same number of elements. Each struct sudo_conv_reply must have its reply member initialized

 to NULL. The struct sudo_conv_callback pointer, if not NULL, should contain function point?

 ers to be called when the sudo process is suspended and/or resumed during conversation in?

 put. The on_suspend and on_resume functions are called with the signal that caused sudo to

 be suspended and the closure pointer from the struct sudo_conv_callback. These functions

 should return 0 on success and -1 on error. On error, the conversation will end and the

 conversation function will return a value of -1. The intended use is to allow the plugin to

 release resources, such as locks, that should not be held indefinitely while suspended and

 then reacquire them when the process is resumed. Note that the functions are not actually

 invoked from within a signal handler.

 The msg_type must be set to one of the following values:

 SUDO_CONV_PROMPT_ECHO_OFF

 Prompt the user for input with echo disabled; this is generally used for passwords.

 The reply will be stored in the replies array, and it will never be NULL.

 SUDO_CONV_PROMPT_ECHO_ON

 Prompt the user for input with echo enabled. The reply will be stored in the replies

 array, and it will never be NULL.

 SUDO_CONV_ERROR_MSG

 Display an error message. The message is written to the standard error unless the

 SUDO_CONV_PREFER_TTY flag is set, in which case it is written to the user's terminal

 if possible. Page 54/61

 SUDO_CONV_INFO_MSG

 Display a message. The message is written to the standard output unless the

 SUDO_CONV_PREFER_TTY flag is set, in which case it is written to the user's terminal

 if possible.

 SUDO_CONV_PROMPT_MASK

 Prompt the user for input but echo an asterisk character for each character read. The

 reply will be stored in the replies array, and it will never be NULL. This can be

 used to provide visual feedback to the user while reading sensitive information that

 should not be displayed.

 In addition to the above values, the following flag bits may also be set:

 SUDO_CONV_PROMPT_ECHO_OK

 Allow input to be read when echo cannot be disabled when the message type is

 SUDO_CONV_PROMPT_ECHO_OFF or SUDO_CONV_PROMPT_MASK. By default, sudo will refuse to

 read input if the echo cannot be disabled for those message types.

 SUDO_CONV_PREFER_TTY

 When displaying a message via SUDO_CONV_ERROR_MSG or SUDO_CONV_INFO_MSG, try to write

 the message to the user's terminal. If the terminal is unavailable, the standard er?

 ror or standard output will be used, depending upon whether SUDO_CONV_ERROR_MSG or

 SUDO_CONV_INFO_MSG was used. The user's terminal is always used when possible for in?

 put, this flag is only used for output.

 The timeout in seconds until the prompt will wait for no more input. A zero value implies

 an infinite timeout.

 The plugin is responsible for freeing the reply buffer located in each struct

 sudo_conv_reply, if it is not NULL. SUDO_CONV_REPL_MAX represents the maximum length of the

 reply buffer (not including the trailing NUL character). In practical terms, this is the

 longest password sudo will support.

 The printf()-style function uses the same underlying mechanism as the conversation() func?

 tion but only supports SUDO_CONV_INFO_MSG and SUDO_CONV_ERROR_MSG for the msg_type parame?

 ter. It can be more convenient than using the conversation() function if no user reply is

 needed and supports standard printf() escape sequences.

 See the sample plugin for an example of the conversation() function usage.

 Plugin invocation order

 As of sudo 1.9.0, the plugin open() and close() functions are called in the following order: Page 55/61

 1. audit open

 2. policy open

 3. approval open

 4. approval close

 5. I/O log open

 6. command runs

 7. command exits

 8. I/O log close

 9. policy close

 10. audit close

 11. sudo exits

 Prior to sudo 1.9.0, the I/O log close() function was called after the policy close() func?

 tion.

 Sudoers group plugin API

 The sudoers plugin supports its own plugin interface to allow non-Unix group lookups. This

 can be used to query a group source other than the standard Unix group database. Two sample

 group plugins are bundled with sudo, group_file, and system_group, are detailed in

 sudoers(5). Third party group plugins include a QAS AD plugin available from Quest Soft?

 ware.

 A group plugin must declare and populate a sudoers_group_plugin struct in the global scope.

 This structure contains pointers to the functions that implement plugin initialization,

 cleanup, and group lookup.

 struct sudoers_group_plugin {

 unsigned int version;

 int (*init)(int version, sudo_printf_t sudo_printf,

 char *const argv[]);

 void (*cleanup)(void);

 int (*query)(const char *user, const char *group,

 const struct passwd *pwd);

 };

 The sudoers_group_plugin struct has the following fields:

 version

 The version field should be set to GROUP_API_VERSION. Page 56/61

 This allows sudoers to determine the API version the group plugin was built against.

 init

 int (*init)(int version, sudo_printf_t plugin_printf,

 char *const argv[]);

 The init() function is called after sudoers has been parsed but before any policy

 checks. It returns 1 on success, 0 on failure (or if the plugin is not configured),

 and -1 if a error occurred. If an error occurs, the plugin may call the

 plugin_printf() function with SUDO_CONF_ERROR_MSG to present additional error informa?

 tion to the user.

 The function arguments are as follows:

 version

 The version passed in by sudoers allows the plugin to determine the major and

 minor version number of the group plugin API supported by sudoers.

 plugin_printf

 A pointer to a printf()-style function that may be used to display informational

 or error message to the user. Returns the number of characters printed on suc?

 cess and -1 on failure.

 argv A NULL-terminated array of arguments generated from the group_plugin option in

 sudoers. If no arguments were given, argv will be NULL.

 cleanup

 void (*cleanup)();

 The cleanup() function is called when sudoers has finished its group checks. The

 plugin should free any memory it has allocated and close open file handles.

 query

 int (*query)(const char *user, const char *group,

 const struct passwd *pwd);

 The query() function is used to ask the group plugin whether user is a member of

 group.

 The function arguments are as follows:

 user The name of the user being looked up in the external group database.

 group

 The name of the group being queried.

 pwd The password database entry for user, if any. If user is not present in the Page 57/61

 password database, pwd will be NULL.

 Group API Version Macros

 /* Sudoers group plugin version major/minor */

 #define GROUP_API_VERSION_MAJOR 1

 #define GROUP_API_VERSION_MINOR 0

 #define GROUP_API_VERSION ((GROUP_API_VERSION_MAJOR << 16) | \

 GROUP_API_VERSION_MINOR)

 For getters and setters see the Policy plugin API.

PLUGIN API CHANGELOG

 The following revisions have been made to the Sudo Plugin API.

 Version 1.0

 Initial API version.

 Version 1.1 (sudo 1.8.0)

 The I/O logging plugin's open() function was modified to take the command_info list as

 an argument.

 Version 1.2 (sudo 1.8.5)

 The Policy and I/O logging plugins' open() functions are now passed a list of plugin

 parameters if any are specified in sudo.conf(5).

 A simple hooks API has been introduced to allow plugins to hook in to the system's en?

 vironment handling functions.

 The init_session Policy plugin function is now passed a pointer to the user environ?

 ment which can be updated as needed. This can be used to merge in environment vari?

 ables stored in the PAM handle before a command is run.

 Version 1.3 (sudo 1.8.7)

 Support for the exec_background entry has been added to the command_info list.

 The max_groups and plugin_dir entries were added to the settings list.

 The version() and close() functions are now optional. Previously, a missing version()

 or close() function would result in a crash. If no policy plugin close() function is

 defined, a default close() function will be provided by the sudo front-end that dis?

 plays a warning if the command could not be executed.

 The sudo front-end now installs default signal handlers to trap common signals while

 the plugin functions are run.

 Version 1.4 (sudo 1.8.8) Page 58/61

 The remote_host entry was added to the settings list.

 Version 1.5 (sudo 1.8.9)

 The preserve_fds entry was added to the command_info list.

 Version 1.6 (sudo 1.8.11)

 The behavior when an I/O logging plugin returns an error (-1) has changed. Previ?

 ously, the sudo front-end took no action when the log_ttyin(), log_ttyout(),

 log_stdin(), log_stdout(), or log_stderr() function returned an error.

 The behavior when an I/O logging plugin returns 0 has changed. Previously, output

 from the command would be displayed to the terminal even if an output logging function

 returned 0.

 Version 1.7 (sudo 1.8.12)

 The plugin_path entry was added to the settings list.

 The debug_flags entry now starts with a debug file path name and may occur multiple

 times if there are multiple plugin-specific Debug lines in the sudo.conf(5) file.

 Version 1.8 (sudo 1.8.15)

 The sudoedit_checkdir and sudoedit_follow entries were added to the command_info list.

 The default value of sudoedit_checkdir was changed to true in sudo 1.8.16.

 The sudo conversation function now takes a pointer to a struct sudo_conv_callback as

 its fourth argument. The sudo_conv_t definition has been updated to match. The

 plugin must specify that it supports plugin API version 1.8 or higher to receive a

 conversation function pointer that supports this argument.

 Version 1.9 (sudo 1.8.16)

 The execfd entry was added to the command_info list.

 Version 1.10 (sudo 1.8.19)

 The umask entry was added to the user_info list. The iolog_group, iolog_mode, and

 iolog_user entries were added to the command_info list.

 Version 1.11 (sudo 1.8.20)

 The timeout entry was added to the settings list.

 Version 1.12 (sudo 1.8.21)

 The change_winsize field was added to the io_plugin struct.

 Version 1.13 (sudo 1.8.26)

 The log_suspend field was added to the io_plugin struct.

 Version 1.14 (sudo 1.8.29) Page 59/61

 The umask_override entry was added to the command_info list.

 Version 1.15 (sudo 1.9.0)

 The cwd_optional entry was added to the command_info list.

 The event_alloc field was added to the policy_plugin and io_plugin structs.

 The errstr argument was added to the policy and I/O plugin functions which the plugin

 function can use to return an error string. This string may be used by the audit

 plugin to report failure or error conditions set by the other plugins.

 The close() function is now is called regardless of whether or not a command was actu?

 ally executed. This makes it possible for plugins to perform cleanup even when a com?

 mand was not run.

 SUDO_CONV_REPL_MAX has increased from 255 to 1023 bytes.

 Support for audit and approval plugins was added.

 Version 1.16 (sudo 1.9.3)

 Initial resource limit values were added to the user_info list.

 The cmnd_chroot and cmnd_cwd enties were added to the settings list.

 Version 1.17 (sudo 1.9.4)

 The event_alloc field was added to the audit_plugin and approval_plugin structs.

 Version 1.18 (sudo 1.9.9)

 The policy may now set resource limit values in the command_info list.

SEE ALSO

 sudo.conf(5), sudoers(5), sudo(8)

AUTHORS

 Many people have worked on sudo over the years; this version consists of code written pri?

 marily by:

 Todd C. Miller

 See the CONTRIBUTORS file in the sudo distribution (https://www.sudo.ws/contributors.html)

 for an exhaustive list of people who have contributed to sudo.

BUGS

 If you feel you have found a bug in sudo, please submit a bug report at

 https://bugzilla.sudo.ws/

SUPPORT

 Limited free support is available via the sudo-users mailing list, see

 https://www.sudo.ws/mailman/listinfo/sudo-users to subscribe or search the archives. Page 60/61

DISCLAIMER

 sudo is provided ?AS IS? and any express or implied warranties, including, but not limited

 to, the implied warranties of merchantability and fitness for a particular purpose are dis?

 claimed. See the LICENSE file distributed with sudo or https://www.sudo.ws/license.html for

 complete details.

Sudo 1.9.9 January 20, 2022 Sudo 1.9.9

Page 61/61

