
Rocky Enterprise Linux 9.2 Manual Pages on command 'sudo_logsrvd.8'

$ man sudo_logsrvd.8

SUDO_LOGSRVD(8) BSD System Manager's Manual SUDO_LOGSRVD(8)

NAME

 sudo_logsrvd ? sudo event and I/O log server

SYNOPSIS

 sudo_logsrvd [-hnV] [-f file] [-R percentage]

DESCRIPTION

 sudo_logsrvd is a high-performance log server that accepts event and I/O logs from sudo. It

 can be used to implement centralized logging of sudo logs. The server has two modes of op?

 eration: local and relay. By default, sudo_logsrvd stores the logs locally but it can also

 be configured to relay them to another server that supports the sudo_logsrv.proto(5) proto?

 col.

 When not relaying, event log entries may be logged either via syslog(3) or to a local file.

 I/O Logs stored locally by sudo_logsrvd can be replayed via the sudoreplay(8) utility in the

 same way as logs generated directly by the sudoers plugin.

 The server also supports restarting interrupted log transfers. To distinguish completed I/O

 logs from incomplete ones, the I/O log timing file is set to be read-only when the log is

 complete.

 Configuration parameters for sudo_logsrvd may be specified in the sudo_logsrvd.conf(5) file

 or the file specified via the -f option.

 sudo_logsrvd rereads its configuration file when it receives SIGHUP and writes server state

 to the debug file (if one is configured) when it receives SIGUSR1.

 The options are as follows:

 -f file, --file=file Page 1/8

 Read configuration from file instead of the default, /etc/sudo_logsrvd.conf.

 -h, --help Display a short help message to the standard output and exit.

 -n, --no-fork

 Run sudo_logsrvd in the foreground instead of detaching from the terminal and

 becoming a daemon.

 -R percentage, --random-drop=percentage

 For each message, there is a percentage chance that the server will drop the

 connection. This is only intended for debugging the ability of a client to

 restart a connection.

 -V, --version

 Print the sudo_logsrvd version and exit.

 Securing server connections

 The I/O log data sent to sudo_logsrvd may contain sensitive information such as passwords

 and should be secured using Transport Layer Security (TLS). Doing so requires having a

 signed certificate on the server and, if tls_checkpeer is enabled in sudo_logsrvd.conf(5), a

 signed certificate on the client as well.

 The certificates can either be signed by a well-known Certificate Authority (CA), or a pri?

 vate CA can be used. Instructions for creating a private CA are included below in the

 EXAMPLES section.

 Debugging sudo_logsrvd

 sudo_logsrvd supports a flexible debugging framework that is configured via Debug lines in

 the sudo.conf(5) file.

 For more information on configuring sudo.conf(5), please refer to its manual.

FILES

 /etc/sudo.conf Sudo front-end configuration

 /etc/sudo_logsrvd.conf Sudo log server configuration file

 /var/log/sudo_logsrvd/incoming

 Directory where new journals are stored when the store_first relay

 setting is enabled.

 /var/log/sudo_logsrvd/outgoing

 Directory where completed journals are stored when the store_first

 relay setting is enabled.

 /var/log/sudo-io Default I/O log file location Page 2/8

 /run/sudo/sudo_logsrvd.pid

 Process ID file for sudo_logsrvd

EXAMPLES

 Creating self-signed certificates

 Unless you are using certificates signed by a well-known Certificate Authority (or a local

 enterprise CA), you will need to create your own CA that can sign the certificates used by

 sudo_logsrvd, sudo_sendlog, and the sudoers plugin. The following steps use the openssl(1)

 command to create keys and certificates.

 Initial setup

 First, we need to create a directory structure to store the files for the CA. We'll create

 a new directory hierarchy in /etc/ssl/sudo for this purpose.

 # mkdir /etc/ssl/sudo

 # cd /etc/ssl/sudo

 # mkdir certs csr newcerts private

 # chmod 700 private

 # touch index.txt

 # echo 1000 > serial

 The serial and index.txt files are used to keep track of signed certificates.

 Next, we need to make a copy of the openssl.conf file and customize it for our new CA. The

 path to openssl.cnf is system-dependent but /etc/ssl/openssl.cnf is the most common loca?

 tion. You will need to adjust the example below if it has a different location on your sys?

 tem.

 # cp /etc/ssl/openssl.cnf .

 Now edit the openssl.cnf file in the current directory and make sure it contains ?ca? and

 ?CA_default? sections. Those sections should include the following settings:

 [ca]

 default_ca = CA_default

 [CA_default]

 dir = /etc/ssl/sudo

 certs = $dir/certs

 database = $dir/index.txt

 certificate = $dir/cacert.pem

 serial = $dir/serial Page 3/8

 If your openssl.conf file already has a ?CA_default? section, you may only need to modify

 the ?dir? setting.

 Creating the CA key and certificate

 In order to create and sign our own certificates, we need to create a private key and a cer?

 tificate for the root of the CA. First, create the private key and protect it with a pass

 phrase:

 # openssl genrsa -aes256 -out private/cakey.pem 4096

 # chmod 400 private/cakey.pem

 Next, generate the root certificate, using appropriate values for the site-specific fields:

 # openssl req -config openssl.cnf -key private/cakey.pem \

 -new -x509 -days 7300 -sha256 -extensions v3_ca \

 -out cacert.pem

 Enter pass phrase for private/cakey.pem:

 You are about to be asked to enter information that will be

 incorporated into your certificate request.

 What you are about to enter is what is called a Distinguished Name

 or a DN.

 There are quite a few fields but you can leave some blank.

 For some fields there will be a default value,

 If you enter '.', the field will be left blank.

 Country Name (2 letter code) [AU]:US

 State or Province Name (full name) [Some-State]:Colorado

 Locality Name (eg, city) []:

 Organization Name (eg, company) [Internet Widgits Pty Ltd]:sudo

 Organizational Unit Name (eg, section) []:sudo Certificate Authority

 Common Name (e.g., server FQDN or YOUR name) []:sudo Root CA

 Email Address []:

 # chmod 444 cacert.pem

 Finally, verify the root certificate:

 # openssl x509 -noout -text -in cacert.pem

 Creating and signing certificates

 The server and client certificates will be signed by the previously created root CA. Usu? Page 4/8

 ally, the root CA is not used to sign server/client certificates directly. Instead, inter?

 mediate certificates are created and signed with the root CA and the intermediate certs are

 used to sign CSRs (Certificate Signing Request). In this example we'll skip this part for

 simplicity's sake and sign the CSRs with the root CA.

 First, generate the private key without a pass phrase.

 # openssl genrsa -out private/logsrvd_key.pem 2048

 # chmod 400 private/logsrvd_key.pem

 Next, create a certificate signing request (CSR) for the server's certificate. The organi?

 zation name must match the name given in the root certificate. The common name should be

 either the server's IP address or a fully qualified domain name.

 # openssl req -config openssl.cnf -key private/logsrvd_key.pem -new \

 -sha256 -out csr/logsrvd_csr.pem

 Enter pass phrase for private/logsrvd_key.pem:

 You are about to be asked to enter information that will be

 incorporated into your certificate request.

 What you are about to enter is what is called a Distinguished Name

 or a DN.

 There are quite a few fields but you can leave some blank.

 For some fields there will be a default value,

 If you enter '.', the field will be left blank.

 Country Name (2 letter code) [AU]:US

 State or Province Name (full name) [Some-State]:Colorado

 Locality Name (eg, city) []:

 Organization Name (eg, company) [Internet Widgits Pty Ltd]:sudo

 Organizational Unit Name (eg, section) []:sudo log server

 Common Name (e.g., server FQDN or YOUR name) []:logserver.example.com

 Email Address []:

 Please enter the following 'extra' attributes

 to be sent with your certificate request

 A challenge password []:

 An optional company name []:

 Now sign the CSR that was just created: Page 5/8

 # openssl ca -config openssl.cnf -days 375 -notext -md sha256 \

 -in csr/logsrvd_csr.pem -out certs/logsrvd_cert.pem

 Using configuration from openssl.cnf

 Enter pass phrase for ./private/cakey.pem:

 Check that the request matches the signature

 Signature ok

 Certificate Details:

 Serial Number: 4096 (0x1000)

 Validity

 Not Before: Nov 11 14:05:05 2019 GMT

 Not After : Nov 20 14:05:05 2020 GMT

 Subject:

 countryName = US

 stateOrProvinceName = Colorado

 organizationName = sudo

 organizationalUnitName = sudo log server

 commonName = logserve.example.com

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 Netscape Comment:

 OpenSSL Generated Certificate

 X509v3 Subject Key Identifier:

 4C:50:F9:D0:BE:1A:4C:B2:AC:90:76:56:C7:9E:16:AE:E6:9E:E5:B5

 X509v3 Authority Key Identifier:

 keyid:D7:91:24:16:B1:03:06:65:1A:7A:6E:CF:51:E9:5C:CB:7A:95:3E:0C

 Certificate is to be certified until Nov 20 14:05:05 2020 GMT (375 days)

 Sign the certificate? [y/n]:y

 1 out of 1 certificate requests certified, commit? [y/n]y

 Write out database with 1 new entries

 Data Base Updated

 Finally, verify the new certificate:

 # openssl verify -CAfile cacert.pem certs/logsrvd_cert.pem Page 6/8

 certs/logsrvd_cert.pem: OK

 The /etc/ssl/sudo/certs directory now contains a signed and verified certificate for use

 with sudo_logsrvd.

 To generate a client certificate, repeat the process above using a different file name.

 Configuring sudo_logsrvd to use TLS

 To use TLS for client/server communication, both sudo_logsrvd and the sudoers plugin need to

 be configured to use TLS. Configuring sudo_logsrvd for TLS requires the following settings,

 assuming the same path names used earlier:

 # Listen on port 30344 for TLS connections to any address.

 listen_address = *:30344(tls)

 # Path to the certificate authority bundle file in PEM format.

 tls_cacert = /etc/ssl/sudo/cacert.pem

 # Path to the server's certificate file in PEM format.

 tls_cert = /etc/ssl/sudo/certs/logsrvd_cert.pem

 # Path to the server's private key file in PEM format.

 tls_key = /etc/ssl/sudo/private/logsrvd_key.pem

 The root CA cert (cacert.pem) must be installed on the system running sudo_logsrvd. If peer

 authentication is enabled on the client, a copy of cacert.pem must be present on the client

 system too.

SEE ALSO

 sudo.conf(5), sudo_logsrvd.conf(5), sudoers(5), sudo(8), sudo_sendlog(8), sudoreplay(8)

AUTHORS

 Many people have worked on sudo over the years; this version consists of code written pri?

 marily by:

 Todd C. Miller

 See the CONTRIBUTORS file in the sudo distribution (https://www.sudo.ws/contributors.html)

 for an exhaustive list of people who have contributed to sudo.

BUGS

 If you feel you have found a bug in sudo_logsrvd, please submit a bug report at

 https://bugzilla.sudo.ws/

SUPPORT

 Limited free support is available via the sudo-users mailing list, see

 https://www.sudo.ws/mailman/listinfo/sudo-users to subscribe or search the archives. Page 7/8

DISCLAIMER

 sudo_logsrvd is provided ?AS IS? and any express or implied warranties, including, but not

 limited to, the implied warranties of merchantability and fitness for a particular purpose

 are disclaimed. See the LICENSE file distributed with sudo or https://www.sudo.ws/li?

 cense.html for complete details.

Sudo 1.9.9 September 17, 2021 Sudo 1.9.9

Page 8/8

