
Rocky Enterprise Linux 9.2 Manual Pages on command 'sudo.conf.5'

$ man sudo.conf.5

SUDO.CONF(5) BSD File Formats Manual SUDO.CONF(5)

NAME

 sudo.conf ? configuration for sudo front-end

DESCRIPTION

 The sudo.conf file is used to configure the sudo front-end. It is used to configure sudo

 plugins, plugin-agnostic path names, debug flags, and other settings.

 The sudo.conf file supports the following directives, described in detail below.

 Plugin an approval, audit, I/O logging, or security policy plugin

 Path a plugin-agnostic path

 Set a front-end setting, such as disable_coredump or group_source

 Debug debug flags to aid in debugging sudo, sudoreplay, visudo, and the sudoers plugin.

 The pound sign (?#?) is used to indicate a comment. Both the comment character and any text

 after it, up to the end of the line, are ignored.

 Long lines can be continued with a backslash (?\?) as the last character on the line. Note

 that leading white space is removed from the beginning of lines even when the continuation

 character is used.

 Non-comment lines that don't begin with Plugin, Path, Debug, or Set are silently ignored.

 The sudo.conf file is always parsed in the ?C? locale.

 Plugin configuration

 sudo supports a plugin architecture for security policies and input/output logging. Third

 parties can develop and distribute their own policy and I/O logging plugins to work seam?

 lessly with the sudo front-end. Plugins are dynamically loaded based on the contents of

 sudo.conf. Page 1/13

 A Plugin line consists of the Plugin keyword, followed by the symbol_name and the path to

 the dynamic shared object that contains the plugin. The symbol_name is the name of the

 approval_plugin, audit_plugin, io_plugin, or policy_plugin struct contained in the plugin.

 If a plugin implements multiple plugin types, there must be a Plugin line for each unique

 symbol name. The path may be fully qualified or relative. If not fully qualified, it is

 relative to the directory specified by the plugin_dir Path setting, which defaults to

 /usr/libexec/sudo. In other words:

 Plugin sudoers_policy sudoers.so

 is equivalent to:

 Plugin sudoers_policy /usr/libexec/sudo/sudoers.so

 If the plugin was compiled statically into the sudo binary instead of being installed as a

 dynamic shared object, the path should be specified without a leading directory, as it does

 not actually exist in the file system. For example:

 Plugin sudoers_policy sudoers.so

 Starting with sudo 1.8.5, any additional parameters after the path are passed as arguments

 to the plugin's open function. For example, to override the compile-time default sudoers

 file mode:

 Plugin sudoers_policy sudoers.so sudoers_mode=0440

 See the sudoers(5) manual for a list of supported arguments.

 The same dynamic shared object may contain multiple plugins, each with a different symbol

 name. The file must be owned by user-ID 0 and only writable by its owner. Because of ambi?

 guities that arise from composite policies, only a single policy plugin may be specified.

 This limitation does not apply to I/O plugins.

 If no sudo.conf file is present, or if it contains no Plugin lines, the sudoers plugin will

 be used as the default security policy, for I/O logging (if enabled by the policy), and for

 auditing. This is equivalent to the following:

 Plugin sudoers_policy sudoers.so

 Plugin sudoers_io sudoers.so

 Plugin sudoers_audit sudoers.so

 Starting with sudo version 1.9.1, some of the logging functionality of the sudoers plugin

 has been moved from the policy plugin to an audit plugin. To maintain compatibility with

 sudo.conf files from older sudo versions, if sudoers is configured as the security policy,

 it will be used as an audit plugin as well. This guarantees that the logging behavior will Page 2/13

 be consistnet with that of sudo versions 1.9.0 and below.

 For more information on the sudo plugin architecture, see the sudo_plugin(5) manual.

 Path settings

 A Path line consists of the Path keyword, followed by the name of the path to set and its

 value. For example:

 Path intercept /usr/libexec/sudo/sudo_intercept.so

 Path noexec /usr/libexec/sudo/sudo_noexec.so

 Path askpass /usr/X11R6/bin/ssh-askpass

 If no path name is specified, features relying on the specified setting will be disabled.

 Disabling Path settings is only supported in sudo version 1.8.16 and higher.

 The following plugin-agnostic paths may be set in the /etc/sudo.conf file:

 askpass The fully qualified path to a helper program used to read the user's password when

 no terminal is available. This may be the case when sudo is executed from a

 graphical (as opposed to text-based) application. The program specified by

 askpass should display the argument passed to it as the prompt and write the

 user's password to the standard output. The value of askpass may be overridden by

 the SUDO_ASKPASS environment variable.

 devsearch

 An ordered, colon-separated search path of directories to look in for device

 nodes. This is used when mapping the process's tty device number to a device name

 on systems that do not provide such a mechanism. Sudo will not recurse into sub-

 directories. If terminal devices may be located in a sub-directory of /dev, that

 path must be explicitly listed in devsearch. The default value is

 /dev/pts:/dev/vt:/dev/term:/dev/zcons:/dev/pty:/dev

 This option is ignored on systems that support either the devname() or

 _ttyname_dev() functions, for example BSD, macOS and Solaris.

 intercept

 The fully-qualified path to a shared library containing a wrappers for the

 execl(), execle(), execlp(), execv(), execve(), execvp(), and execvpe() library

 functions that intercepts attempts to run further commands and performs a policy

 check before allowing them to be executed. This is used to implement the

 intercept functionality on systems that support LD_PRELOAD or its equivalent. The

 default value is /usr/libexec/sudo/sudo_intercept.so. Page 3/13

 noexec The fully-qualified path to a shared library containing wrappers for the execl(),

 execle(), execlp(), exect(), execv(), execve(), execveat(), execvP(), execvp(),

 execvpe(), fexecve(), popen(), posix_spawn(), posix_spawnp(), system(), and

 wordexp() library functions that prevent the execution of further commands. This

 is used to implement the noexec functionality on systems that support LD_PRELOAD

 or its equivalent. The default value is /usr/libexec/sudo/sudo_noexec.so.

 plugin_dir

 The default directory to use when searching for plugins that are specified without

 a fully qualified path name. The default value is /usr/libexec/sudo.

 sesh The fully-qualified path to the sesh binary. This setting is only used when sudo

 is built with SELinux support. The default value is /usr/libexec/sudo/sesh.

 Other settings

 The sudo.conf file also supports the following front-end settings:

 disable_coredump

 Core dumps of sudo itself are disabled by default to prevent the disclosure of po?

 tentially sensitive information. To aid in debugging sudo crashes, you may wish

 to re-enable core dumps by setting ?disable_coredump? to false in sudo.conf as

 follows:

 Set disable_coredump false

 All modern operating systems place restrictions on core dumps from set-user-ID

 processes like sudo so this option can be enabled without compromising security.

 To actually get a sudo core file you will likely need to enable core dumps for

 set-user-ID processes. On BSD and Linux systems this is accomplished in the

 sysctl(8) command. On Solaris, the coreadm(1m) command is used to configure core

 dump behavior.

 This setting is only available in sudo version 1.8.4 and higher.

 developer_mode

 By default sudo refuses to load plugins which can be modified by other than the

 root user. The plugin should be owned by root and write access permissions should

 be disabled for ?group? and ?other?. To make development of a plugin easier, you

 can disable that by setting ?developer_mode? option to true in sudo.conf as fol?

 lows:

 Set developer_mode true Page 4/13

 Please note that this creates a security risk, so it is not recommended on criti?

 cal systems such as a desktop machine for daily use, but is intended to be used in

 development environments (VM, container, etc). Before enabling developer mode,

 ensure you understand the implications.

 This setting is only available in sudo version 1.9.0 and higher.

 group_source

 sudo passes the invoking user's group list to the policy and I/O plugins. On most

 systems, there is an upper limit to the number of groups that a user may belong to

 simultaneously (typically 16 for compatibility with NFS). On systems with the

 getconf(1) utility, running:

 getconf NGROUPS_MAX

 will return the maximum number of groups.

 However, it is still possible to be a member of a larger number of groups--they

 simply won't be included in the group list returned by the kernel for the user.

 Starting with sudo version 1.8.7, if the user's kernel group list has the maximum

 number of entries, sudo will consult the group database directly to determine the

 group list. This makes it possible for the security policy to perform matching by

 group name even when the user is a member of more than the maximum number of

 groups.

 The group_source setting allows the administrator to change this default behavior.

 Supported values for group_source are:

 static Use the static group list that the kernel returns. Retrieving the group

 list this way is very fast but it is subject to an upper limit as de?

 scribed above. It is ?static? in that it does not reflect changes to

 the group database made after the user logs in. This was the default

 behavior prior to sudo 1.8.7.

 dynamic Always query the group database directly. It is ?dynamic? in that

 changes made to the group database after the user logs in will be re?

 flected in the group list. On some systems, querying the group database

 for all of a user's groups can be time consuming when querying a net?

 work-based group database. Most operating systems provide an efficient

 method of performing such queries. Currently, sudo supports efficient

 group queries on AIX, BSD, HP-UX, Linux, macOS, and Solaris. This is Page 5/13

 the default behavior on macOS in sudo 1.9.6 and higher.

 adaptive Only query the group database if the static group list returned by the

 kernel has the maximum number of entries. This is the default behavior

 on systems other than macOS in sudo 1.8.7 and higher.

 For example, to cause sudo to only use the kernel's static list of groups for the

 user:

 Set group_source static

 This setting is only available in sudo version 1.8.7 and higher.

 max_groups

 The maximum number of user groups to retrieve from the group database. Values

 less than one or larger than 1024 will be ignored. This setting is only used when

 querying the group database directly. It is intended to be used on systems where

 it is not possible to detect when the array to be populated with group entries is

 not sufficiently large. By default, sudo will allocate four times the system's

 maximum number of groups (see above) and retry with double that number if the

 group database query fails.

 This setting is only available in sudo version 1.8.7 and higher. It should not be

 required in sudo versions 1.8.24 and higher and may be removed in a later release.

 probe_interfaces

 By default, sudo will probe the system's network interfaces and pass the IP ad?

 dress of each enabled interface to the policy plugin. This makes it possible for

 the plugin to match rules based on the IP address without having to query DNS. On

 Linux systems with a large number of virtual interfaces, this may take a non-neg?

 ligible amount of time. If IP-based matching is not required, network interface

 probing can be disabled as follows:

 Set probe_interfaces false

 This setting is only available in sudo version 1.8.10 and higher.

 Debug settings

 sudo versions 1.8.4 and higher support a flexible debugging framework that can log what sudo

 is doing internally if there is a problem.

 A Debug line consists of the Debug keyword, followed by the name of the program, plugin, or

 shared object to debug, the debug file name, and a comma-separated list of debug flags. The

 debug flag syntax used by sudo, the sudoers plugin along with its associated programs and Page 6/13

 shared objects is subsystem@priority but a third-party plugin is free to use a different

 format so long as it does not include a comma (?,?).

 Examples:

 Debug sudo /var/log/sudo_debug all@warn,plugin@info

 would log all debugging statements at the warn level and higher in addition to those at the

 info level for the plugin subsystem.

 Debug sudo_intercept.so /var/log/intercept_debug all@debug

 would log all debugging statements, regardless of level, for the sudo_intercept.so shared

 object that implements sudo's intercept functionality.

 As of sudo 1.8.12, multiple Debug entries may be specified per program. Older versions of

 sudo only support a single Debug entry per program. Plugin-specific Debug entries are also

 supported starting with sudo 1.8.12 and are matched by either the base name of the plugin

 that was loaded (for example sudoers.so) or by the plugin's fully-qualified path name. Pre?

 viously, the sudoers plugin shared the same Debug entry as the sudo front-end and could not

 be configured separately.

 The following priorities are supported, in order of decreasing severity: crit, err, warn,

 notice, diag, info, trace, and debug. Each priority, when specified, also includes all pri?

 orities higher than it. For example, a priority of notice would include debug messages

 logged at notice and higher.

 The priorities trace and debug also include function call tracing which logs when a function

 is entered and when it returns. For example, the following trace is for the

 get_user_groups() function located in src/sudo.c:

 sudo[123] -> get_user_groups @ src/sudo.c:385

 sudo[123] <- get_user_groups @ src/sudo.c:429 := groups=10,0,5

 When the function is entered, indicated by a right arrow ?->?, the program, process ID,

 function, source file, and line number are logged. When the function returns, indicated by

 a left arrow ?<-?, the same information is logged along with the return value. In this

 case, the return value is a string.

 The following subsystems are used by the sudo front-end:

 all matches every subsystem

 args command line argument processing

 conv user conversation

 edit sudoedit Page 7/13

 event event subsystem

 exec command execution

 main sudo main function

 netif network interface handling

 pcomm communication with the plugin

 plugin plugin configuration

 pty pseudo-terminal related code

 selinux SELinux-specific handling

 util utility functions

 utmp utmp handling

 The sudoers(5) plugin includes support for additional subsystems.

FILES

 /etc/sudo.conf sudo front-end configuration

EXAMPLES

 #

 # Default /etc/sudo.conf file

 #

 # Sudo plugins:

 # Plugin plugin_name plugin_path plugin_options ...

 #

 # The plugin_path is relative to /usr/libexec/sudo unless

 # fully qualified.

 # The plugin_name corresponds to a global symbol in the plugin

 # that contains the plugin interface structure.

 # The plugin_options are optional.

 #

 # The sudoers plugin is used by default if no Plugin lines are present.

 #Plugin sudoers_policy sudoers.so

 #Plugin sudoers_io sudoers.so

 #Plugin sudoers_audit sudoers.so

 #

 # Sudo askpass:

 # Path askpass /path/to/askpass Page 8/13

 #

 # An askpass helper program may be specified to provide a graphical

 # password prompt for "sudo -A" support. Sudo does not ship with its

 # own askpass program but can use the OpenSSH askpass.

 #

 # Use the OpenSSH askpass

 #Path askpass /usr/X11R6/bin/ssh-askpass

 #

 # Use the Gnome OpenSSH askpass

 #Path askpass /usr/libexec/openssh/gnome-ssh-askpass

 #

 # Sudo device search path:

 # Path devsearch /dev/path1:/dev/path2:/dev

 #

 # A colon-separated list of paths to check when searching for a user's

 # terminal device.

 #

 #Path devsearch /dev/pts:/dev/vt:/dev/term:/dev/zcons:/dev/pty:/dev

 #

 # Sudo command interception:

 # Path intercept /path/to/sudo_intercept.so

 #

 # Path to a shared library containing replacements for the execv()

 # and execve() library functions that perform a policy check to verify

 # the command is allowed and simply return an error if not. This is

 # used to implement the "intercept" functionality on systems that

 # support LD_PRELOAD or its equivalent.

 #

 # The compiled-in value is usually sufficient and should only be changed

 # if you rename or move the sudo_intercept.so file.

 #

 #Path intercept /usr/libexec/sudo/sudo_intercept.so

 # Page 9/13

 # Sudo noexec:

 # Path noexec /path/to/sudo_noexec.so

 #

 # Path to a shared library containing replacements for the execv()

 # family of library functions that just return an error. This is

 # used to implement the "noexec" functionality on systems that support

 # LD_PRELOAD or its equivalent.

 #

 # The compiled-in value is usually sufficient and should only be changed

 # if you rename or move the sudo_noexec.so file.

 #

 #Path noexec /usr/libexec/sudo/sudo_noexec.so

 #

 # Sudo plugin directory:

 # Path plugin_dir /path/to/plugins

 #

 # The default directory to use when searching for plugins that are

 # specified without a fully qualified path name.

 #

 #Path plugin_dir /usr/libexec/sudo

 #

 # Sudo developer mode:

 # Set developer_mode true|false

 #

 # Allow loading of plugins that are owned by non-root or are writable

 # by "group" or "other". Should only be used during plugin development.

 #Set developer_mode true

 #

 # Core dumps:

 # Set disable_coredump true|false

 #

 # By default, sudo disables core dumps while it is executing (they

 # are re-enabled for the command that is run). Page 10/13

 # To aid in debugging sudo problems, you may wish to enable core

 # dumps by setting "disable_coredump" to false.

 #

 #Set disable_coredump false

 #

 # User groups:

 # Set group_source static|dynamic|adaptive

 #

 # Sudo passes the user's group list to the policy plugin.

 # If the user is a member of the maximum number of groups (usually 16),

 # sudo will query the group database directly to be sure to include

 # the full list of groups.

 #

 # On some systems, this can be expensive so the behavior is configurable.

 # The "group_source" setting has three possible values:

 # static - use the user's list of groups returned by the kernel.

 # dynamic - query the group database to find the list of groups.

 # adaptive - if user is in less than the maximum number of groups.

 # use the kernel list, else query the group database.

 #

 #Set group_source static

 #

 # Sudo interface probing:

 # Set probe_interfaces true|false

 #

 # By default, sudo will probe the system's network interfaces and

 # pass the IP address of each enabled interface to the policy plugin.

 # On systems with a large number of virtual interfaces this may take

 # a noticeable amount of time.

 #

 #Set probe_interfaces false

 #

 # Sudo debug files: Page 11/13

 # Debug program /path/to/debug_log subsystem@priority[,subsyste@priority]

 #

 # Sudo and related programs support logging debug information to a file.

 # The program is typically sudo, sudoers.so, sudoreplay, or visudo.

 #

 # Subsystems vary based on the program; "all" matches all subsystems.

 # Priority may be crit, err, warn, notice, diag, info, trace, or debug.

 # Multiple subsystem@priority may be specified, separated by a comma.

 #

 #Debug sudo /var/log/sudo_debug all@debug

 #Debug sudoers.so /var/log/sudoers_debug all@debug

SEE ALSO

 sudo_plugin(5), sudoers(5), sudo(8)

HISTORY

 See the HISTORY file in the sudo distribution (https://www.sudo.ws/history.html) for a brief

 history of sudo.

AUTHORS

 Many people have worked on sudo over the years; this version consists of code written pri?

 marily by:

 Todd C. Miller

 See the CONTRIBUTORS file in the sudo distribution (https://www.sudo.ws/contributors.html)

 for an exhaustive list of people who have contributed to sudo.

BUGS

 If you feel you have found a bug in sudo, please submit a bug report at

 https://bugzilla.sudo.ws/

SUPPORT

 Limited free support is available via the sudo-users mailing list, see

 https://www.sudo.ws/mailman/listinfo/sudo-users to subscribe or search the archives.

DISCLAIMER

 sudo is provided ?AS IS? and any express or implied warranties, including, but not limited

 to, the implied warranties of merchantability and fitness for a particular purpose are dis?

 claimed. See the LICENSE file distributed with sudo or https://www.sudo.ws/license.html for

 complete details. Page 12/13

Sudo 1.9.9 January 20, 2022 Sudo 1.9.9

Page 13/13

