
Rocky Enterprise Linux 9.2 Manual Pages on command 'statfs64.2'

$ man statfs64.2

STATFS(2) Linux Programmer's Manual STATFS(2)

NAME

 statfs, fstatfs - get filesystem statistics

SYNOPSIS

 #include <sys/vfs.h> /* or <sys/statfs.h> */

 int statfs(const char *path, struct statfs *buf);

 int fstatfs(int fd, struct statfs *buf);

DESCRIPTION

 The statfs() system call returns information about a mounted filesystem. path is the

 pathname of any file within the mounted filesystem. buf is a pointer to a statfs struc?

 ture defined approximately as follows:

 struct statfs {

 __fsword_t f_type; /* Type of filesystem (see below) */

 __fsword_t f_bsize; /* Optimal transfer block size */

 fsblkcnt_t f_blocks; /* Total data blocks in filesystem */

 fsblkcnt_t f_bfree; /* Free blocks in filesystem */

 fsblkcnt_t f_bavail; /* Free blocks available to

 unprivileged user */

 fsfilcnt_t f_files; /* Total inodes in filesystem */

 fsfilcnt_t f_ffree; /* Free inodes in filesystem */

 fsid_t f_fsid; /* Filesystem ID */

 __fsword_t f_namelen; /* Maximum length of filenames */

 __fsword_t f_frsize; /* Fragment size (since Linux 2.6) */ Page 1/7

 __fsword_t f_flags; /* Mount flags of filesystem

 (since Linux 2.6.36) */

 __fsword_t f_spare[xxx];

 /* Padding bytes reserved for future use */

 };

 The following filesystem types may appear in f_type:

 ADFS_SUPER_MAGIC 0xadf5

 AFFS_SUPER_MAGIC 0xadff

 AFS_SUPER_MAGIC 0x5346414f

 ANON_INODE_FS_MAGIC 0x09041934 /* Anonymous inode FS (for

 pseudofiles that have no name;

 e.g., epoll, signalfd, bpf) */

 AUTOFS_SUPER_MAGIC 0x0187

 BDEVFS_MAGIC 0x62646576

 BEFS_SUPER_MAGIC 0x42465331

 BFS_MAGIC 0x1badface

 BINFMTFS_MAGIC 0x42494e4d

 BPF_FS_MAGIC 0xcafe4a11

 BTRFS_SUPER_MAGIC 0x9123683e

 BTRFS_TEST_MAGIC 0x73727279

 CGROUP_SUPER_MAGIC 0x27e0eb /* Cgroup pseudo FS */

 CGROUP2_SUPER_MAGIC 0x63677270 /* Cgroup v2 pseudo FS */

 CIFS_MAGIC_NUMBER 0xff534d42

 CODA_SUPER_MAGIC 0x73757245

 COH_SUPER_MAGIC 0x012ff7b7

 CRAMFS_MAGIC 0x28cd3d45

 DEBUGFS_MAGIC 0x64626720

 DEVFS_SUPER_MAGIC 0x1373 /* Linux 2.6.17 and earlier */

 DEVPTS_SUPER_MAGIC 0x1cd1

 ECRYPTFS_SUPER_MAGIC 0xf15f

 EFIVARFS_MAGIC 0xde5e81e4

 EFS_SUPER_MAGIC 0x00414a53

 EXT_SUPER_MAGIC 0x137d /* Linux 2.0 and earlier */ Page 2/7

 EXT2_OLD_SUPER_MAGIC 0xef51

 EXT2_SUPER_MAGIC 0xef53

 EXT3_SUPER_MAGIC 0xef53

 EXT4_SUPER_MAGIC 0xef53

 F2FS_SUPER_MAGIC 0xf2f52010

 FUSE_SUPER_MAGIC 0x65735546

 FUTEXFS_SUPER_MAGIC 0xbad1dea /* Unused */

 HFS_SUPER_MAGIC 0x4244

 HOSTFS_SUPER_MAGIC 0x00c0ffee

 HPFS_SUPER_MAGIC 0xf995e849

 HUGETLBFS_MAGIC 0x958458f6

 ISOFS_SUPER_MAGIC 0x9660

 JFFS2_SUPER_MAGIC 0x72b6

 JFS_SUPER_MAGIC 0x3153464a

 MINIX_SUPER_MAGIC 0x137f /* original minix FS */

 MINIX_SUPER_MAGIC2 0x138f /* 30 char minix FS */

 MINIX2_SUPER_MAGIC 0x2468 /* minix V2 FS */

 MINIX2_SUPER_MAGIC2 0x2478 /* minix V2 FS, 30 char names */

 MINIX3_SUPER_MAGIC 0x4d5a /* minix V3 FS, 60 char names */

 MQUEUE_MAGIC 0x19800202 /* POSIX message queue FS */

 MSDOS_SUPER_MAGIC 0x4d44

 MTD_INODE_FS_MAGIC 0x11307854

 NCP_SUPER_MAGIC 0x564c

 NFS_SUPER_MAGIC 0x6969

 NILFS_SUPER_MAGIC 0x3434

 NSFS_MAGIC 0x6e736673

 NTFS_SB_MAGIC 0x5346544e

 OCFS2_SUPER_MAGIC 0x7461636f

 OPENPROM_SUPER_MAGIC 0x9fa1

 OVERLAYFS_SUPER_MAGIC 0x794c7630

 PIPEFS_MAGIC 0x50495045

 PROC_SUPER_MAGIC 0x9fa0 /* /proc FS */

 PSTOREFS_MAGIC 0x6165676c Page 3/7

 QNX4_SUPER_MAGIC 0x002f

 QNX6_SUPER_MAGIC 0x68191122

 RAMFS_MAGIC 0x858458f6

 REISERFS_SUPER_MAGIC 0x52654973

 ROMFS_MAGIC 0x7275

 SECURITYFS_MAGIC 0x73636673

 SELINUX_MAGIC 0xf97cff8c

 SMACK_MAGIC 0x43415d53

 SMB_SUPER_MAGIC 0x517b

 SMB2_MAGIC_NUMBER 0xfe534d42

 SOCKFS_MAGIC 0x534f434b

 SQUASHFS_MAGIC 0x73717368

 SYSFS_MAGIC 0x62656572

 SYSV2_SUPER_MAGIC 0x012ff7b6

 SYSV4_SUPER_MAGIC 0x012ff7b5

 TMPFS_MAGIC 0x01021994

 TRACEFS_MAGIC 0x74726163

 UDF_SUPER_MAGIC 0x15013346

 UFS_MAGIC 0x00011954

 USBDEVICE_SUPER_MAGIC 0x9fa2

 V9FS_MAGIC 0x01021997

 VXFS_SUPER_MAGIC 0xa501fcf5

 XENFS_SUPER_MAGIC 0xabba1974

 XENIX_SUPER_MAGIC 0x012ff7b4

 XFS_SUPER_MAGIC 0x58465342

 _XIAFS_SUPER_MAGIC 0x012fd16d /* Linux 2.0 and earlier */

 Most of these MAGIC constants are defined in /usr/include/linux/magic.h, and some are

 hardcoded in kernel sources.

 The f_flags field is a bit mask indicating mount options for the filesystem. It contains

 zero or more of the following bits:

 ST_MANDLOCK

 Mandatory locking is permitted on the filesystem (see fcntl(2)).

 ST_NOATIME Page 4/7

 Do not update access times; see mount(2).

 ST_NODEV

 Disallow access to device special files on this filesystem.

 ST_NODIRATIME

 Do not update directory access times; see mount(2).

 ST_NOEXEC

 Execution of programs is disallowed on this filesystem.

 ST_NOSUID

 The set-user-ID and set-group-ID bits are ignored by exec(3) for executable files

 on this filesystem

 ST_RDONLY

 This filesystem is mounted read-only.

 ST_RELATIME

 Update atime relative to mtime/ctime; see mount(2).

 ST_SYNCHRONOUS

 Writes are synched to the filesystem immediately (see the description of O_SYNC in

 open(2)).

 ST_NOSYMFOLLOW (since Linux 5.10)

 Symbolic links are not followed when resolving paths; see mount(2).

 Nobody knows what f_fsid is supposed to contain (but see below).

 Fields that are undefined for a particular filesystem are set to 0.

 fstatfs() returns the same information about an open file referenced by descriptor fd.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 EACCES (statfs()) Search permission is denied for a component of the path prefix of path.

 (See also path_resolution(7).)

 EBADF (fstatfs()) fd is not a valid open file descriptor.

 EFAULT buf or path points to an invalid address.

 EINTR The call was interrupted by a signal; see signal(7).

 EIO An I/O error occurred while reading from the filesystem.

 ELOOP (statfs()) Too many symbolic links were encountered in translating path.

 ENAMETOOLONG Page 5/7

 (statfs()) path is too long.

 ENOENT (statfs()) The file referred to by path does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOSYS The filesystem does not support this call.

 ENOTDIR

 (statfs()) A component of the path prefix of path is not a directory.

 EOVERFLOW

 Some values were too large to be represented in the returned struct.

CONFORMING TO

 Linux-specific. The Linux statfs() was inspired by the 4.4BSD one (but they do not use

 the same structure).

NOTES

 The __fsword_t type used for various fields in the statfs structure definition is a glibc

 internal type, not intended for public use. This leaves the programmer in a bit of a co?

 nundrum when trying to copy or compare these fields to local variables in a program. Us?

 ing unsigned int for such variables suffices on most systems.

 The original Linux statfs() and fstatfs() system calls were not designed with extremely

 large file sizes in mind. Subsequently, Linux 2.6 added new statfs64() and fstatfs64()

 system calls that employ a new structure, statfs64. The new structure contains the same

 fields as the original statfs structure, but the sizes of various fields are increased, to

 accommodate large file sizes. The glibc statfs() and fstatfs() wrapper functions trans?

 parently deal with the kernel differences.

 Some systems have only <sys/vfs.h>, other systems also have <sys/statfs.h>, where the for?

 mer includes the latter. So it seems including the former is the best choice.

 LSB has deprecated the library calls statfs() and fstatfs() and tells us to use statvfs(2)

 and fstatvfs(2) instead.

 The f_fsid field

 Solaris, Irix and POSIX have a system call statvfs(2) that returns a struct statvfs (de?

 fined in <sys/statvfs.h>) containing an unsigned long f_fsid. Linux, SunOS, HP-UX, 4.4BSD

 have a system call statfs() that returns a struct statfs (defined in <sys/vfs.h>) contain?

 ing a fsid_t f_fsid, where fsid_t is defined as struct { int val[2]; }. The same holds

 for FreeBSD, except that it uses the include file <sys/mount.h>.

 The general idea is that f_fsid contains some random stuff such that the pair (f_fsid,ino) Page 6/7

 uniquely determines a file. Some operating systems use (a variation on) the device num?

 ber, or the device number combined with the filesystem type. Several operating systems

 restrict giving out the f_fsid field to the superuser only (and zero it for unprivileged

 users), because this field is used in the filehandle of the filesystem when NFS-exported,

 and giving it out is a security concern.

 Under some operating systems, the fsid can be used as the second argument to the sysfs(2)

 system call.

BUGS

 From Linux 2.6.38 up to and including Linux 3.1, fstatfs() failed with the error ENOSYS

 for file descriptors created by pipe(2).

SEE ALSO

 stat(2), statvfs(3), path_resolution(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 STATFS(2)

Page 7/7

