
Rocky Enterprise Linux 9.2 Manual Pages on command 'st.4'

$ man st.4

ST(4) Linux Programmer's Manual ST(4)

NAME

 st - SCSI tape device

SYNOPSIS

 #include <sys/mtio.h>

 int ioctl(int fd, int request [, (void *)arg3]);

 int ioctl(int fd, MTIOCTOP, (struct mtop *)mt_cmd);

 int ioctl(int fd, MTIOCGET, (struct mtget *)mt_status);

 int ioctl(int fd, MTIOCPOS, (struct mtpos *)mt_pos);

DESCRIPTION

 The st driver provides the interface to a variety of SCSI tape devices. Currently, the

 driver takes control of all detected devices of type ?sequential-access?. The st driver

 uses major device number 9.

 Each device uses eight minor device numbers. The lowermost five bits in the minor numbers

 are assigned sequentially in the order of detection. In the 2.6 kernel, the bits above

 the eight lowermost bits are concatenated to the five lowermost bits to form the tape num?

 ber. The minor numbers can be grouped into two sets of four numbers: the principal (auto-

 rewind) minor device numbers, n, and the ?no-rewind? device numbers, (n + 128). Devices

 opened using the principal device number will be sent a REWIND command when they are

 closed. Devices opened using the ?no-rewind? device number will not. (Note that using an

 auto-rewind device for positioning the tape with, for instance, mt does not lead to the

 desired result: the tape is rewound after the mt command and the next command starts from

 the beginning of the tape). Page 1/14

 Within each group, four minor numbers are available to define devices with different char?

 acteristics (block size, compression, density, etc.) When the system starts up, only the

 first device is available. The other three are activated when the default characteristics

 are defined (see below). (By changing compile-time constants, it is possible to change

 the balance between the maximum number of tape drives and the number of minor numbers for

 each drive. The default allocation allows control of 32 tape drives. For instance, it is

 possible to control up to 64 tape drives with two minor numbers for different options.)

 Devices are typically created by:

 mknod -m 666 /dev/st0 c 9 0

 mknod -m 666 /dev/st0l c 9 32

 mknod -m 666 /dev/st0m c 9 64

 mknod -m 666 /dev/st0a c 9 96

 mknod -m 666 /dev/nst0 c 9 128

 mknod -m 666 /dev/nst0l c 9 160

 mknod -m 666 /dev/nst0m c 9 192

 mknod -m 666 /dev/nst0a c 9 224

 There is no corresponding block device.

 The driver uses an internal buffer that has to be large enough to hold at least one tape

 block. In kernels before 2.1.121, the buffer is allocated as one contiguous block. This

 limits the block size to the largest contiguous block of memory the kernel allocator can

 provide. The limit is currently 128 kB for 32-bit architectures and 256 kB for 64-bit ar?

 chitectures. In newer kernels the driver allocates the buffer in several parts if neces?

 sary. By default, the maximum number of parts is 16. This means that the maximum block

 size is very large (2 MB if allocation of 16 blocks of 128 kB succeeds).

 The driver's internal buffer size is determined by a compile-time constant which can be

 overridden with a kernel startup option. In addition to this, the driver tries to allo?

 cate a larger temporary buffer at run time if necessary. However, run-time allocation of

 large contiguous blocks of memory may fail and it is advisable not to rely too much on dy?

 namic buffer allocation with kernels older than 2.1.121 (this applies also to demand-load?

 ing the driver with kerneld or kmod).

 The driver does not specifically support any tape drive brand or model. After system

 start-up the tape device options are defined by the drive firmware. For example, if the

 drive firmware selects fixed-block mode, the tape device uses fixed-block mode. The op? Page 2/14

 tions can be changed with explicit ioctl(2) calls and remain in effect when the device is

 closed and reopened. Setting the options affects both the auto-rewind and the nonrewind

 device.

 Different options can be specified for the different devices within the subgroup of four.

 The options take effect when the device is opened. For example, the system administrator

 can define one device that writes in fixed-block mode with a certain block size, and one

 which writes in variable-block mode (if the drive supports both modes).

 The driver supports tape partitions if they are supported by the drive. (Note that the

 tape partitions have nothing to do with disk partitions. A partitioned tape can be seen

 as several logical tapes within one medium.) Partition support has to be enabled with an

 ioctl(2). The tape location is preserved within each partition across partition changes.

 The partition used for subsequent tape operations is selected with an ioctl(2). The par?

 tition switch is executed together with the next tape operation in order to avoid unneces?

 sary tape movement. The maximum number of partitions on a tape is defined by a compile-

 time constant (originally four). The driver contains an ioctl(2) that can format a tape

 with either one or two partitions.

 Device /dev/tape is usually created as a hard or soft link to the default tape device on

 the system.

 Starting from kernel 2.6.2, the driver exports in the sysfs directory /sys/class/scsi_tape

 the attached devices and some parameters assigned to the devices.

 Data transfer

 The driver supports operation in both fixed-block mode and variable-block mode (if sup?

 ported by the drive). In fixed-block mode the drive writes blocks of the specified size

 and the block size is not dependent on the byte counts of the write system calls. In

 variable-block mode one tape block is written for each write call and the byte count de?

 termines the size of the corresponding tape block. Note that the blocks on the tape don't

 contain any information about the writing mode: when reading, the only important thing is

 to use commands that accept the block sizes on the tape.

 In variable-block mode the read byte count does not have to match the tape block size ex?

 actly. If the byte count is larger than the next block on tape, the driver returns the

 data and the function returns the actual block size. If the block size is larger than the

 byte count, an error is returned.

 In fixed-block mode the read byte counts can be arbitrary if buffering is enabled, or a Page 3/14

 multiple of the tape block size if buffering is disabled. Kernels before 2.1.121 allow

 writes with arbitrary byte count if buffering is enabled. In all other cases (kernel be?

 fore 2.1.121 with buffering disabled or newer kernel) the write byte count must be a mul?

 tiple of the tape block size.

 In the 2.6 kernel, the driver tries to use direct transfers between the user buffer and

 the device. If this is not possible, the driver's internal buffer is used. The reasons

 for not using direct transfers include improper alignment of the user buffer (default is

 512 bytes but this can be changed by the HBA driver), one or more pages of the user buffer

 not reachable by the SCSI adapter, and so on.

 A filemark is automatically written to tape if the last tape operation before close was a

 write.

 When a filemark is encountered while reading, the following happens. If there are data

 remaining in the buffer when the filemark is found, the buffered data is returned. The

 next read returns zero bytes. The following read returns data from the next file. The

 end of recorded data is signaled by returning zero bytes for two consecutive read calls.

 The third read returns an error.

 Ioctls

 The driver supports three ioctl(2) requests. Requests not recognized by the st driver are

 passed to the SCSI driver. The definitions below are from /usr/include/linux/mtio.h:

 MTIOCTOP ? perform a tape operation

 This request takes an argument of type (struct mtop *). Not all drives support all opera?

 tions. The driver returns an EIO error if the drive rejects an operation.

 /* Structure for MTIOCTOP - mag tape op command: */

 struct mtop {

 short mt_op; /* operations defined below */

 int mt_count; /* how many of them */

 };

 Magnetic tape operations for normal tape use:

 MTBSF Backward space over mt_count filemarks.

 MTBSFM Backward space over mt_count filemarks. Reposition the tape to the EOT side of the

 last filemark.

 MTBSR Backward space over mt_count records (tape blocks).

 MTBSS Backward space over mt_count setmarks. Page 4/14

 MTCOMPRESSION

 Enable compression of tape data within the drive if mt_count is nonzero and disable

 compression if mt_count is zero. This command uses the MODE page 15 supported by

 most DATs.

 MTEOM Go to the end of the recorded media (for appending files).

 MTERASE

 Erase tape. With 2.6 kernel, short erase (mark tape empty) is performed if the ar?

 gument is zero. Otherwise, long erase (erase all) is done.

 MTFSF Forward space over mt_count filemarks.

 MTFSFM Forward space over mt_count filemarks. Reposition the tape to the BOT side of the

 last filemark.

 MTFSR Forward space over mt_count records (tape blocks).

 MTFSS Forward space over mt_count setmarks.

 MTLOAD Execute the SCSI load command. A special case is available for some HP autoload?

 ers. If mt_count is the constant MT_ST_HPLOADER_OFFSET plus a number, the number

 is sent to the drive to control the autoloader.

 MTLOCK Lock the tape drive door.

 MTMKPART

 Format the tape into one or two partitions. If mt_count is positive, it gives the

 size of partition 1 and partition 0 contains the rest of the tape. If mt_count is

 zero, the tape is formatted into one partition. From kernel version 4.6, a nega?

 tive mt_count specifies the size of partition 0 and the rest of the tape contains

 partition 1. The physical ordering of partitions depends on the drive. This com?

 mand is not allowed for a drive unless the partition support is enabled for the

 drive (see MT_ST_CAN_PARTITIONS below).

 MTNOP No op?flushes the driver's buffer as a side effect. Should be used before reading

 status with MTIOCGET.

 MTOFFL Rewind and put the drive off line.

 MTRESET

 Reset drive.

 MTRETEN

 Re-tension tape.

 MTREW Rewind. Page 5/14

 MTSEEK Seek to the tape block number specified in mt_count. This operation requires ei?

 ther a SCSI-2 drive that supports the LOCATE command (device-specific address) or a

 Tandberg-compatible SCSI-1 drive (Tandberg, Archive Viper, Wangtek, ...). The

 block number should be one that was previously returned by MTIOCPOS if device-spe?

 cific addresses are used.

 MTSETBLK

 Set the drive's block length to the value specified in mt_count. A block length of

 zero sets the drive to variable block size mode.

 MTSETDENSITY

 Set the tape density to the code in mt_count. The density codes supported by a

 drive can be found from the drive documentation.

 MTSETPART

 The active partition is switched to mt_count. The partitions are numbered from

 zero. This command is not allowed for a drive unless the partition support is en?

 abled for the drive (see MT_ST_CAN_PARTITIONS below).

 MTUNLOAD

 Execute the SCSI unload command (does not eject the tape).

 MTUNLOCK

 Unlock the tape drive door.

 MTWEOF Write mt_count filemarks.

 MTWSM Write mt_count setmarks.

 Magnetic tape operations for setting of device options (by the superuser):

 MTSETDRVBUFFER

 Set various drive and driver options according to bits encoded in mt_count. These

 consist of the drive's buffering mode, a set of Boolean driver options, the buffer

 write threshold, defaults for the block size and density, and timeouts (only in

 kernels 2.1 and later). A single operation can affect only one item in the list

 below (the Booleans counted as one item.)

 A value having zeros in the high-order 4 bits will be used to set the drive's

 buffering mode. The buffering modes are:

 0 The drive will not report GOOD status on write commands until the data

 blocks are actually written to the medium.

 1 The drive may report GOOD status on write commands as soon as all the data Page 6/14

 has been transferred to the drive's internal buffer.

 2 The drive may report GOOD status on write commands as soon as (a) all the

 data has been transferred to the drive's internal buffer, and (b) all

 buffered data from different initiators has been successfully written to

 the medium.

 To control the write threshold the value in mt_count must include the constant

 MT_ST_WRITE_THRESHOLD bitwise ORed with a block count in the low 28 bits. The

 block count refers to 1024-byte blocks, not the physical block size on the tape.

 The threshold cannot exceed the driver's internal buffer size (see DESCRIPTION,

 above).

 To set and clear the Boolean options the value in mt_count must include one of the

 constants MT_ST_BOOLEANS, MT_ST_SETBOOLEANS, MT_ST_CLEARBOOLEANS, or MT_ST_DEF?

 BOOLEANS bitwise ORed with whatever combination of the following options is de?

 sired. Using MT_ST_BOOLEANS the options can be set to the values defined in the

 corresponding bits. With MT_ST_SETBOOLEANS the options can be selectively set and

 with MT_ST_DEFBOOLEANS selectively cleared.

 The default options for a tape device are set with MT_ST_DEFBOOLEANS. A nonactive

 tape device (e.g., device with minor 32 or 160) is activated when the default op?

 tions for it are defined the first time. An activated device inherits from the de?

 vice activated at start-up the options not set explicitly.

 The Boolean options are:

 MT_ST_BUFFER_WRITES (Default: true)

 Buffer all write operations in fixed-block mode. If this option is false

 and the drive uses a fixed block size, then all write operations must be for

 a multiple of the block size. This option must be set false to write reli?

 able multivolume archives.

 MT_ST_ASYNC_WRITES (Default: true)

 When this option is true, write operations return immediately without wait?

 ing for the data to be transferred to the drive if the data fits into the

 driver's buffer. The write threshold determines how full the buffer must be

 before a new SCSI write command is issued. Any errors reported by the drive

 will be held until the next operation. This option must be set false to

 write reliable multivolume archives. Page 7/14

 MT_ST_READ_AHEAD (Default: true)

 This option causes the driver to provide read buffering and read-ahead in

 fixed-block mode. If this option is false and the drive uses a fixed block

 size, then all read operations must be for a multiple of the block size.

 MT_ST_TWO_FM (Default: false)

 This option modifies the driver behavior when a file is closed. The normal

 action is to write a single filemark. If the option is true, the driver

 will write two filemarks and backspace over the second one.

 Note: This option should not be set true for QIC tape drives since they are

 unable to overwrite a filemark. These drives detect the end of recorded

 data by testing for blank tape rather than two consecutive filemarks. Most

 other current drives also detect the end of recorded data and using two

 filemarks is usually necessary only when interchanging tapes with some other

 systems.

 MT_ST_DEBUGGING (Default: false)

 This option turns on various debugging messages from the driver (effective

 only if the driver was compiled with DEBUG defined nonzero).

 MT_ST_FAST_EOM (Default: false)

 This option causes the MTEOM operation to be sent directly to the drive, po?

 tentially speeding up the operation but causing the driver to lose track of

 the current file number normally returned by the MTIOCGET request. If

 MT_ST_FAST_EOM is false, the driver will respond to an MTEOM request by for?

 ward spacing over files.

 MT_ST_AUTO_LOCK (Default: false)

 When this option is true, the drive door is locked when the device file is

 opened and unlocked when it is closed.

 MT_ST_DEF_WRITES (Default: false)

 The tape options (block size, mode, compression, etc.) may change when

 changing from one device linked to a drive to another device linked to the

 same drive depending on how the devices are defined. This option defines

 when the changes are enforced by the driver using SCSI-commands and when the

 drives auto-detection capabilities are relied upon. If this option is

 false, the driver sends the SCSI-commands immediately when the device is Page 8/14

 changed. If the option is true, the SCSI-commands are not sent until a

 write is requested. In this case, the drive firmware is allowed to detect

 the tape structure when reading and the SCSI-commands are used only to make

 sure that a tape is written according to the correct specification.

 MT_ST_CAN_BSR (Default: false)

 When read-ahead is used, the tape must sometimes be spaced backward to the

 correct position when the device is closed and the SCSI command to space

 backward over records is used for this purpose. Some older drives can't

 process this command reliably and this option can be used to instruct the

 driver not to use the command. The end result is that, with read-ahead and

 fixed-block mode, the tape may not be correctly positioned within a file

 when the device is closed. With 2.6 kernel, the default is true for drives

 supporting SCSI-3.

 MT_ST_NO_BLKLIMS (Default: false)

 Some drives don't accept the READ BLOCK LIMITS SCSI command. If this is

 used, the driver does not use the command. The drawback is that the driver

 can't check before sending commands if the selected block size is acceptable

 to the drive.

 MT_ST_CAN_PARTITIONS (Default: false)

 This option enables support for several partitions within a tape. The op?

 tion applies to all devices linked to a drive.

 MT_ST_SCSI2LOGICAL (Default: false)

 This option instructs the driver to use the logical block addresses defined

 in the SCSI-2 standard when performing the seek and tell operations (both

 with MTSEEK and MTIOCPOS commands and when changing tape partition). Other?

 wise, the device-specific addresses are used. It is highly advisable to set

 this option if the drive supports the logical addresses because they count

 also filemarks. There are some drives that support only the logical block

 addresses.

 MT_ST_SYSV (Default: false)

 When this option is enabled, the tape devices use the System V semantics.

 Otherwise, the BSD semantics are used. The most important difference be?

 tween the semantics is what happens when a device used for reading is Page 9/14

 closed: in System V semantics the tape is spaced forward past the next file?

 mark if this has not happened while using the device. In BSD semantics the

 tape position is not changed.

 MT_NO_WAIT (Default: false)

 Enables immediate mode (i.e., don't wait for the command to finish) for some

 commands (e.g., rewind).

 An example:

 struct mtop mt_cmd;

 mt_cmd.mt_op = MTSETDRVBUFFER;

 mt_cmd.mt_count = MT_ST_BOOLEANS |

 MT_ST_BUFFER_WRITES | MT_ST_ASYNC_WRITES;

 ioctl(fd, MTIOCTOP, mt_cmd);

 The default block size for a device can be set with MT_ST_DEF_BLKSIZE and the de?

 fault density code can be set with MT_ST_DEFDENSITY. The values for the parameters

 are or'ed with the operation code.

 With kernels 2.1.x and later, the timeout values can be set with the subcommand

 MT_ST_SET_TIMEOUT ORed with the timeout in seconds. The long timeout (used for

 rewinds and other commands that may take a long time) can be set with

 MT_ST_SET_LONG_TIMEOUT. The kernel defaults are very long to make sure that a suc?

 cessful command is not timed out with any drive. Because of this, the driver may

 seem stuck even if it is only waiting for the timeout. These commands can be used

 to set more practical values for a specific drive. The timeouts set for one device

 apply for all devices linked to the same drive.

 Starting from kernels 2.4.19 and 2.5.43, the driver supports a status bit which in?

 dicates whether the drive requests cleaning. The method used by the drive to re?

 turn cleaning information is set using the MT_ST_SEL_CLN subcommand. If the value

 is zero, the cleaning bit is always zero. If the value is one, the TapeAlert data

 defined in the SCSI-3 standard is used (not yet implemented). Values 2?17 are re?

 served. If the lowest eight bits are >= 18, bits from the extended sense data are

 used. The bits 9?16 specify a mask to select the bits to look at and the bits

 17?23 specify the bit pattern to look for. If the bit pattern is zero, one or more

 bits under the mask indicate the cleaning request. If the pattern is nonzero, the

 pattern must match the masked sense data byte. Page 10/14

 MTIOCGET ? get status

 This request takes an argument of type (struct mtget *).

 /* structure for MTIOCGET - mag tape get status command */

 struct mtget {

 long mt_type;

 long mt_resid;

 /* the following registers are device dependent */

 long mt_dsreg;

 long mt_gstat;

 long mt_erreg;

 /* The next two fields are not always used */

 daddr_t mt_fileno;

 daddr_t mt_blkno;

 };

 mt_type

 The header file defines many values for mt_type, but the current driver reports

 only the generic types MT_ISSCSI1 (Generic SCSI-1 tape) and MT_ISSCSI2 (Generic

 SCSI-2 tape).

 mt_resid

 contains the current tape partition number.

 mt_dsreg

 reports the drive's current settings for block size (in the low 24 bits) and den?

 sity (in the high 8 bits). These fields are defined by MT_ST_BLKSIZE_SHIFT,

 MT_ST_BLKSIZE_MASK, MT_ST_DENSITY_SHIFT, and MT_ST_DENSITY_MASK.

 mt_gstat

 reports generic (device independent) status information. The header file defines

 macros for testing these status bits:

 GMT_EOF(x): The tape is positioned just after a filemark (always false after an MT?

 SEEK operation).

 GMT_BOT(x): The tape is positioned at the beginning of the first file (always false

 after an MTSEEK operation).

 GMT_EOT(x): A tape operation has reached the physical End Of Tape.

 GMT_SM(x): The tape is currently positioned at a setmark (always false after an MT? Page 11/14

 SEEK operation).

 GMT_EOD(x): The tape is positioned at the end of recorded data.

 GMT_WR_PROT(x): The drive is write-protected. For some drives this can also mean

 that the drive does not support writing on the current medium type.

 GMT_ONLINE(x): The last open(2) found the drive with a tape in place and ready for

 operation.

 GMT_D_6250(x), GMT_D_1600(x), GMT_D_800(x): This ?generic? status information re?

 ports the current density setting for 9-track ?" tape drives only.

 GMT_DR_OPEN(x): The drive does not have a tape in place.

 GMT_IM_REP_EN(x): Immediate report mode. This bit is set if there are no guaran?

 tees that the data has been physically written to the tape when the write call

 returns. It is set zero only when the driver does not buffer data and the

 drive is set not to buffer data.

 GMT_CLN(x): The drive has requested cleaning. Implemented in kernels since 2.4.19

 and 2.5.43.

 mt_erreg

 The only field defined in mt_erreg is the recovered error count in the low 16 bits

 (as defined by MT_ST_SOFTERR_SHIFT and MT_ST_SOFTERR_MASK). Due to inconsistencies

 in the way drives report recovered errors, this count is often not maintained (most

 drives do not by default report soft errors but this can be changed with a SCSI

 MODE SELECT command).

 mt_fileno

 reports the current file number (zero-based). This value is set to -1 when the

 file number is unknown (e.g., after MTBSS or MTSEEK).

 mt_blkno

 reports the block number (zero-based) within the current file. This value is set

 to -1 when the block number is unknown (e.g., after MTBSF, MTBSS, or MTSEEK).

 MTIOCPOS ? get tape position

 This request takes an argument of type (struct mtpos *) and reports the drive's notion of

 the current tape block number, which is not the same as mt_blkno returned by MTIOCGET.

 This drive must be a SCSI-2 drive that supports the READ POSITION command (device-specific

 address) or a Tandberg-compatible SCSI-1 drive (Tandberg, Archive Viper, Wangtek, ...).

 /* structure for MTIOCPOS - mag tape get position command */ Page 12/14

 struct mtpos {

 long mt_blkno; /* current block number */

 };

RETURN VALUE

 EACCES An attempt was made to write or erase a write-protected tape. (This error is not

 detected during open(2).)

 EBUSY The device is already in use or the driver was unable to allocate a buffer.

 EFAULT The command parameters point to memory not belonging to the calling process.

 EINVAL An ioctl(2) had an invalid argument, or a requested block size was invalid.

 EIO The requested operation could not be completed.

 ENOMEM The byte count in read(2) is smaller than the next physical block on the tape.

 (Before 2.2.18 and 2.4.0 the extra bytes have been silently ignored.)

 ENOSPC A write operation could not be completed because the tape reached end-of-medium.

 ENOSYS Unknown ioctl(2).

 ENXIO During opening, the tape device does not exist.

 EOVERFLOW

 An attempt was made to read or write a variable-length block that is larger than

 the driver's internal buffer.

 EROFS Open is attempted with O_WRONLY or O_RDWR when the tape in the drive is write-pro?

 tected.

FILES

 /dev/st*

 the auto-rewind SCSI tape devices

 /dev/nst*

 the nonrewind SCSI tape devices

NOTES

 1. When exchanging data between systems, both systems have to agree on the physical tape

 block size. The parameters of a drive after startup are often not the ones most oper?

 ating systems use with these devices. Most systems use drives in variable-block mode

 if the drive supports that mode. This applies to most modern drives, including DATs,

 8mm helical scan drives, DLTs, etc. It may be advisable to use these drives in vari?

 able-block mode also in Linux (i.e., use MTSETBLK or MTSETDEFBLK at system startup to

 set the mode), at least when exchanging data with a foreign system. The drawback of Page 13/14

 this is that a fairly large tape block size has to be used to get acceptable data

 transfer rates on the SCSI bus.

 2. Many programs (e.g., tar(1)) allow the user to specify the blocking factor on the com?

 mand line. Note that this determines the physical block size on tape only in vari?

 able-block mode.

 3. In order to use SCSI tape drives, the basic SCSI driver, a SCSI-adapter driver and the

 SCSI tape driver must be either configured into the kernel or loaded as modules. If

 the SCSI-tape driver is not present, the drive is recognized but the tape support de?

 scribed in this page is not available.

 4. The driver writes error messages to the console/log. The SENSE codes written into

 some messages are automatically translated to text if verbose SCSI messages are en?

 abled in kernel configuration.

 5. The driver's internal buffering allows good throughput in fixed-block mode also with

 small read(2) and write(2) byte counts. With direct transfers this is not possible

 and may cause a surprise when moving to the 2.6 kernel. The solution is to tell the

 software to use larger transfers (often telling it to use larger blocks). If this is

 not possible, direct transfers can be disabled.

SEE ALSO

 mt(1)

 The file drivers/scsi/README.st or Documentation/scsi/st.txt (kernel >= 2.6) in the Linux

 kernel source tree contains the most recent information about the driver and its configu?

 ration possibilities

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 ST(4)

Page 14/14

