
Rocky Enterprise Linux 9.2 Manual Pages on command 'sssd.8'

$ man sssd.8

SSSD(8) SSSD Manual pages SSSD(8)

NAME

 sssd - System Security Services Daemon

SYNOPSIS

 sssd [options]

DESCRIPTION

 SSSD provides a set of daemons to manage access to remote directories and authentication

 mechanisms. It provides an NSS and PAM interface toward the system and a pluggable backend

 system to connect to multiple different account sources as well as D-Bus interface. It is

 also the basis to provide client auditing and policy services for projects like FreeIPA.

 It provides a more robust database to store local users as well as extended user data.

OPTIONS

 -d,--debug-level LEVEL

 SSSD supports two representations for specifying the debug level. The simplest is to

 specify a decimal value from 0-9, which represents enabling that level and all

 lower-level debug messages. The more comprehensive option is to specify a hexadecimal

 bitmask to enable or disable specific levels (such as if you wish to suppress a

 level).

 Please note that each SSSD service logs into its own log file. Also please note that

 enabling ?debug_level? in the ?[sssd]? section only enables debugging just for the

 sssd process itself, not for the responder or provider processes. The ?debug_level?

 parameter should be added to all sections that you wish to produce debug logs from.

 In addition to changing the log level in the config file using the ?debug_level? Page 1/4

 parameter, which is persistent, but requires SSSD restart, it is also possible to

 change the debug level on the fly using the sss_debuglevel(8) tool.

 Currently supported debug levels:

 0, 0x0010: Fatal failures. Anything that would prevent SSSD from starting up or causes

 it to cease running.

 1, 0x0020: Critical failures. An error that doesn't kill SSSD, but one that indicates

 that at least one major feature is not going to work properly.

 2, 0x0040: Serious failures. An error announcing that a particular request or

 operation has failed.

 3, 0x0080: Minor failures. These are the errors that would percolate down to cause the

 operation failure of 2.

 4, 0x0100: Configuration settings.

 5, 0x0200: Function data.

 6, 0x0400: Trace messages for operation functions.

 7, 0x1000: Trace messages for internal control functions.

 8, 0x2000: Contents of function-internal variables that may be interesting.

 9, 0x4000: Extremely low-level tracing information.

 10, 0x10000: Even more low-level libldb tracing information. Almost never really

 required.

 To log required bitmask debug levels, simply add their numbers together as shown in

 following examples:

 Example: To log fatal failures, critical failures, serious failures and function data

 use 0x0270.

 Example: To log fatal failures, configuration settings, function data, trace messages

 for internal control functions use 0x1310.

 Note: The bitmask format of debug levels was introduced in 1.7.0.

 Default: 0x0070 (i.e. fatal, critical and serious failures; corresponds to setting 2

 in decimal notation)

 --debug-timestamps=mode

 1: Add a timestamp to the debug messages

 0: Disable timestamp in the debug messages

 Default: 1

 --debug-microseconds=mode Page 2/4

 1: Add microseconds to the timestamp in debug messages

 0: Disable microseconds in timestamp

 Default: 0

 --logger=value

 Location where SSSD will send log messages.

 stderr: Redirect debug messages to standard error output.

 files: Redirect debug messages to the log files. By default, the log files are stored

 in /var/log/sssd and there are separate log files for every SSSD service and domain.

 journald: Redirect debug messages to systemd-journald

 Default: not set (fall back to journald if available, otherwise to stderr)

 -D,--daemon

 Become a daemon after starting up.

 -i,--interactive

 Run in the foreground, don't become a daemon.

 -c,--config

 Specify a non-default config file. The default is /etc/sssd/sssd.conf. For reference

 on the config file syntax and options, consult the sssd.conf(5) manual page.

 -g,--genconf

 Do not start the SSSD, but refresh the configuration database from the contents of

 /etc/sssd/sssd.conf and exit.

 -s,--genconf-section

 Similar to ?--genconf?, but only refresh a single section from the configuration file.

 This option is useful mainly to be called from systemd unit files to allow

 socket-activated responders to refresh their configuration without requiring the

 administrator to restart the whole SSSD.

 -?,--help

 Display help message and exit.

 --version

 Print version number and exit.

SIGNALS

 SIGTERM/SIGINT

 Informs the SSSD to gracefully terminate all of its child processes and then shut down

 the monitor. Page 3/4

 SIGHUP

 Tells the SSSD to stop writing to its current debug file descriptors and to close and

 reopen them. This is meant to facilitate log rolling with programs like logrotate.

 SIGUSR1

 Tells the SSSD to simulate offline operation for the duration of the ?offline_timeout?

 parameter. This is useful for testing. The signal can be sent to either the sssd

 process or any sssd_be process directly.

 SIGUSR2

 Tells the SSSD to go online immediately. This is useful for testing. The signal can be

 sent to either the sssd process or any sssd_be process directly.

NOTES

 If the environment variable SSS_NSS_USE_MEMCACHE is set to "NO", client applications will

 not use the fast in-memory cache.

SEE ALSO

 sssd(8), sssd.conf(5), sssd-ldap(5), sssd-krb5(5), sssd-simple(5), sssd-ipa(5), sssd-

 ad(5), sssd-files(5), sssd-sudo(5), sssd-session-recording(5), sss_cache(8),

 sss_debuglevel(8), sss_obfuscate(8), sss_seed(8), sssd_krb5_locator_plugin(8),

 sss_ssh_authorizedkeys(8), sss_ssh_knownhostsproxy(8), sssd-ifp(5), pam_sss(8).

 sss_rpcidmapd(5) sssd-systemtap(5)

AUTHORS

 The SSSD upstream - https://github.com/SSSD/sssd/

SSSD 10/04/2022 SSSD(8)

Page 4/4

