
Rocky Enterprise Linux 9.2 Manual Pages on command 'ssh_config.5'

$ man ssh_config.5

SSH_CONFIG(5) BSD File Formats Manual SSH_CONFIG(5)

NAME

 ssh_config ? OpenSSH client configuration file

DESCRIPTION

 ssh(1) obtains configuration data from the following sources in the following order:

 1. command-line options

 2. user's configuration file (~/.ssh/config)

 3. system-wide configuration file (/etc/ssh/ssh_config)

 For each parameter, the first obtained value will be used. The configuration files contain

 sections separated by Host specifications, and that section is only applied for hosts that

 match one of the patterns given in the specification. The matched host name is usually the

 one given on the command line (see the CanonicalizeHostname option for exceptions).

 Since the first obtained value for each parameter is used, more host-specific declarations

 should be given near the beginning of the file, and general defaults at the end.

 Note that the Debian openssh-client package sets several options as standard in

 /etc/ssh/ssh_config which are not the default in ssh(1):

 ? Include /etc/ssh/ssh_config.d/*.conf

 ? SendEnv LANG LC_*

 ? HashKnownHosts yes

 ? GSSAPIAuthentication yes

 /etc/ssh/ssh_config.d/*.conf files are included at the start of the system-wide configura?

 tion file, so options set there will override those in /etc/ssh/ssh_config.

 The file contains keyword-argument pairs, one per line. Lines starting with ?#? and empty Page 1/30

 lines are interpreted as comments. Arguments may optionally be enclosed in double quotes

 (") in order to represent arguments containing spaces. Configuration options may be sepa?

 rated by whitespace or optional whitespace and exactly one ?=?; the latter format is useful

 to avoid the need to quote whitespace when specifying configuration options using the ssh,

 scp, and sftp -o option.

 The possible keywords and their meanings are as follows (note that keywords are case-insen?

 sitive and arguments are case-sensitive):

 Host Restricts the following declarations (up to the next Host or Match keyword) to be

 only for those hosts that match one of the patterns given after the keyword. If

 more than one pattern is provided, they should be separated by whitespace. A single

 ?*? as a pattern can be used to provide global defaults for all hosts. The host is

 usually the hostname argument given on the command line (see the

 CanonicalizeHostname keyword for exceptions).

 A pattern entry may be negated by prefixing it with an exclamation mark (?!?). If a

 negated entry is matched, then the Host entry is ignored, regardless of whether any

 other patterns on the line match. Negated matches are therefore useful to provide

 exceptions for wildcard matches.

 See PATTERNS for more information on patterns.

 Match Restricts the following declarations (up to the next Host or Match keyword) to be

 used only when the conditions following the Match keyword are satisfied. Match con?

 ditions are specified using one or more criteria or the single token all which al?

 ways matches. The available criteria keywords are: canonical, final, exec, host,

 originalhost, user, and localuser. The all criteria must appear alone or immedi?

 ately after canonical or final. Other criteria may be combined arbitrarily. All

 criteria but all, canonical, and final require an argument. Criteria may be negated

 by prepending an exclamation mark (?!?).

 The canonical keyword matches only when the configuration file is being re-parsed

 after hostname canonicalization (see the CanonicalizeHostname option). This may be

 useful to specify conditions that work with canonical host names only.

 The final keyword requests that the configuration be re-parsed (regardless of

 whether CanonicalizeHostname is enabled), and matches only during this final pass.

 If CanonicalizeHostname is enabled, then canonical and final match during the same

 pass. Page 2/30

 The exec keyword executes the specified command under the user's shell. If the com?

 mand returns a zero exit status then the condition is considered true. Commands

 containing whitespace characters must be quoted. Arguments to exec accept the to?

 kens described in the TOKENS section.

 The other keywords' criteria must be single entries or comma-separated lists and may

 use the wildcard and negation operators described in the PATTERNS section. The cri?

 teria for the host keyword are matched against the target hostname, after any sub?

 stitution by the Hostname or CanonicalizeHostname options. The originalhost keyword

 matches against the hostname as it was specified on the command-line. The user key?

 word matches against the target username on the remote host. The localuser keyword

 matches against the name of the local user running ssh(1) (this keyword may be use?

 ful in system-wide ssh_config files).

 AddKeysToAgent

 Specifies whether keys should be automatically added to a running ssh-agent(1). If

 this option is set to yes and a key is loaded from a file, the key and its

 passphrase are added to the agent with the default lifetime, as if by ssh-add(1).

 If this option is set to ask, ssh(1) will require confirmation using the SSH_ASKPASS

 program before adding a key (see ssh-add(1) for details). If this option is set to

 confirm, each use of the key must be confirmed, as if the -c option was specified to

 ssh-add(1). If this option is set to no, no keys are added to the agent. Alter?

 nately, this option may be specified as a time interval using the format described

 in the TIME FORMATS section of sshd_config(5) to specify the key's lifetime in

 ssh-agent(1), after which it will automatically be removed. The argument must be no

 (the default), yes, confirm (optionally followed by a time interval), ask or a time

 interval.

 AddressFamily

 Specifies which address family to use when connecting. Valid arguments are any (the

 default), inet (use IPv4 only), or inet6 (use IPv6 only).

 BatchMode

 If set to yes, user interaction such as password prompts and host key confirmation

 requests will be disabled. In addition, the ServerAliveInterval option will be set

 to 300 seconds by default (Debian-specific). This option is useful in scripts and

 other batch jobs where no user is present to interact with ssh(1), and where it is Page 3/30

 desirable to detect a broken network swiftly. The argument must be yes or no (the

 default).

 BindAddress

 Use the specified address on the local machine as the source address of the connec?

 tion. Only useful on systems with more than one address.

 BindInterface

 Use the address of the specified interface on the local machine as the source ad?

 dress of the connection.

 CanonicalDomains

 When CanonicalizeHostname is enabled, this option specifies the list of domain suf?

 fixes in which to search for the specified destination host.

 CanonicalizeFallbackLocal

 Specifies whether to fail with an error when hostname canonicalization fails. The

 default, yes, will attempt to look up the unqualified hostname using the system re?

 solver's search rules. A value of no will cause ssh(1) to fail instantly if

 CanonicalizeHostname is enabled and the target hostname cannot be found in any of

 the domains specified by CanonicalDomains.

 CanonicalizeHostname

 Controls whether explicit hostname canonicalization is performed. The default, no,

 is not to perform any name rewriting and let the system resolver handle all hostname

 lookups. If set to yes then, for connections that do not use a ProxyCommand or

 ProxyJump, ssh(1) will attempt to canonicalize the hostname specified on the command

 line using the CanonicalDomains suffixes and CanonicalizePermittedCNAMEs rules. If

 CanonicalizeHostname is set to always, then canonicalization is applied to proxied

 connections too.

 If this option is enabled, then the configuration files are processed again using

 the new target name to pick up any new configuration in matching Host and Match

 stanzas. A value of none disables the use of a ProxyJump host.

 CanonicalizeMaxDots

 Specifies the maximum number of dot characters in a hostname before canonicalization

 is disabled. The default, 1, allows a single dot (i.e. hostname.subdomain).

 CanonicalizePermittedCNAMEs

 Specifies rules to determine whether CNAMEs should be followed when canonicalizing Page 4/30

 hostnames. The rules consist of one or more arguments of

 source_domain_list:target_domain_list, where source_domain_list is a pattern-list of

 domains that may follow CNAMEs in canonicalization, and target_domain_list is a pat?

 tern-list of domains that they may resolve to.

 For example, "*.a.example.com:*.b.example.com,*.c.example.com" will allow hostnames

 matching "*.a.example.com" to be canonicalized to names in the "*.b.example.com" or

 "*.c.example.com" domains.

 A single argument of "none" causes no CNAMEs to be considered for canonicalization.

 This is the default behaviour.

 CASignatureAlgorithms

 Specifies which algorithms are allowed for signing of certificates by certificate

 authorities (CAs). The default is:

 ssh-ed25519,ecdsa-sha2-nistp256,

 ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

 sk-ssh-ed25519@openssh.com,

 sk-ecdsa-sha2-nistp256@openssh.com,

 rsa-sha2-512,rsa-sha2-256

 If the specified list begins with a ?+? character, then the specified algorithms

 will be appended to the default set instead of replacing them. If the specified

 list begins with a ?-? character, then the specified algorithms (including wild?

 cards) will be removed from the default set instead of replacing them.

 ssh(1) will not accept host certificates signed using algorithms other than those

 specified.

 CertificateFile

 Specifies a file from which the user's certificate is read. A corresponding private

 key must be provided separately in order to use this certificate either from an

 IdentityFile directive or -i flag to ssh(1), via ssh-agent(1), or via a

 PKCS11Provider or SecurityKeyProvider.

 Arguments to CertificateFile may use the tilde syntax to refer to a user's home di?

 rectory, the tokens described in the TOKENS section and environment variables as de?

 scribed in the ENVIRONMENT VARIABLES section.

 It is possible to have multiple certificate files specified in configuration files;

 these certificates will be tried in sequence. Multiple CertificateFile directives Page 5/30

 will add to the list of certificates used for authentication.

 CheckHostIP

 If set to yes ssh(1) will additionally check the host IP address in the known_hosts

 file. This allows it to detect if a host key changed due to DNS spoofing and will

 add addresses of destination hosts to ~/.ssh/known_hosts in the process, regardless

 of the setting of StrictHostKeyChecking. If the option is set to no (the default),

 the check will not be executed.

 Ciphers

 Specifies the ciphers allowed and their order of preference. Multiple ciphers must

 be comma-separated. If the specified list begins with a ?+? character, then the

 specified ciphers will be appended to the default set instead of replacing them. If

 the specified list begins with a ?-? character, then the specified ciphers (includ?

 ing wildcards) will be removed from the default set instead of replacing them. If

 the specified list begins with a ?^? character, then the specified ciphers will be

 placed at the head of the default set.

 The supported ciphers are:

 3des-cbc

 aes128-cbc

 aes192-cbc

 aes256-cbc

 aes128-ctr

 aes192-ctr

 aes256-ctr

 aes128-gcm@openssh.com

 aes256-gcm@openssh.com

 chacha20-poly1305@openssh.com

 The default is:

 chacha20-poly1305@openssh.com,

 aes128-ctr,aes192-ctr,aes256-ctr,

 aes128-gcm@openssh.com,aes256-gcm@openssh.com

 The list of available ciphers may also be obtained using "ssh -Q cipher".

 ClearAllForwardings

 Specifies that all local, remote, and dynamic port forwardings specified in the con? Page 6/30

 figuration files or on the command line be cleared. This option is primarily useful

 when used from the ssh(1) command line to clear port forwardings set in configura?

 tion files, and is automatically set by scp(1) and sftp(1). The argument must be

 yes or no (the default).

 Compression

 Specifies whether to use compression. The argument must be yes or no (the default).

 ConnectionAttempts

 Specifies the number of tries (one per second) to make before exiting. The argument

 must be an integer. This may be useful in scripts if the connection sometimes

 fails. The default is 1.

 ConnectTimeout

 Specifies the timeout (in seconds) used when connecting to the SSH server, instead

 of using the default system TCP timeout. This timeout is applied both to establish?

 ing the connection and to performing the initial SSH protocol handshake and key ex?

 change.

 ControlMaster

 Enables the sharing of multiple sessions over a single network connection. When set

 to yes, ssh(1) will listen for connections on a control socket specified using the

 ControlPath argument. Additional sessions can connect to this socket using the same

 ControlPath with ControlMaster set to no (the default). These sessions will try to

 reuse the master instance's network connection rather than initiating new ones, but

 will fall back to connecting normally if the control socket does not exist, or is

 not listening.

 Setting this to ask will cause ssh(1) to listen for control connections, but require

 confirmation using ssh-askpass(1). If the ControlPath cannot be opened, ssh(1) will

 continue without connecting to a master instance.

 X11 and ssh-agent(1) forwarding is supported over these multiplexed connections,

 however the display and agent forwarded will be the one belonging to the master con?

 nection i.e. it is not possible to forward multiple displays or agents.

 Two additional options allow for opportunistic multiplexing: try to use a master

 connection but fall back to creating a new one if one does not already exist. These

 options are: auto and autoask. The latter requires confirmation like the ask op?

 tion. Page 7/30

 ControlPath

 Specify the path to the control socket used for connection sharing as described in

 the ControlMaster section above or the string none to disable connection sharing.

 Arguments to ControlPath may use the tilde syntax to refer to a user's home direc?

 tory, the tokens described in the TOKENS section and environment variables as de?

 scribed in the ENVIRONMENT VARIABLES section. It is recommended that any

 ControlPath used for opportunistic connection sharing include at least %h, %p, and

 %r (or alternatively %C) and be placed in a directory that is not writable by other

 users. This ensures that shared connections are uniquely identified.

 ControlPersist

 When used in conjunction with ControlMaster, specifies that the master connection

 should remain open in the background (waiting for future client connections) after

 the initial client connection has been closed. If set to no (the default), then the

 master connection will not be placed into the background, and will close as soon as

 the initial client connection is closed. If set to yes or 0, then the master con?

 nection will remain in the background indefinitely (until killed or closed via a

 mechanism such as the "ssh -O exit"). If set to a time in seconds, or a time in any

 of the formats documented in sshd_config(5), then the backgrounded master connection

 will automatically terminate after it has remained idle (with no client connections)

 for the specified time.

 DynamicForward

 Specifies that a TCP port on the local machine be forwarded over the secure channel,

 and the application protocol is then used to determine where to connect to from the

 remote machine.

 The argument must be [bind_address:]port. IPv6 addresses can be specified by en?

 closing addresses in square brackets. By default, the local port is bound in accor?

 dance with the GatewayPorts setting. However, an explicit bind_address may be used

 to bind the connection to a specific address. The bind_address of localhost indi?

 cates that the listening port be bound for local use only, while an empty address or

 ?*? indicates that the port should be available from all interfaces.

 Currently the SOCKS4 and SOCKS5 protocols are supported, and ssh(1) will act as a

 SOCKS server. Multiple forwardings may be specified, and additional forwardings can

 be given on the command line. Only the superuser can forward privileged ports. Page 8/30

 EnableSSHKeysign

 Setting this option to yes in the global client configuration file

 /etc/ssh/ssh_config enables the use of the helper program ssh-keysign(8) during

 HostbasedAuthentication. The argument must be yes or no (the default). This option

 should be placed in the non-hostspecific section. See ssh-keysign(8) for more in?

 formation.

 EscapeChar

 Sets the escape character (default: ?~?). The escape character can also be set on

 the command line. The argument should be a single character, ?^? followed by a let?

 ter, or none to disable the escape character entirely (making the connection trans?

 parent for binary data).

 ExitOnForwardFailure

 Specifies whether ssh(1) should terminate the connection if it cannot set up all re?

 quested dynamic, tunnel, local, and remote port forwardings, (e.g. if either end is

 unable to bind and listen on a specified port). Note that ExitOnForwardFailure does

 not apply to connections made over port forwardings and will not, for example, cause

 ssh(1) to exit if TCP connections to the ultimate forwarding destination fail. The

 argument must be yes or no (the default).

 FingerprintHash

 Specifies the hash algorithm used when displaying key fingerprints. Valid options

 are: md5 and sha256 (the default).

 ForkAfterAuthentication

 Requests ssh to go to background just before command execution. This is useful if

 ssh is going to ask for passwords or passphrases, but the user wants it in the back?

 ground. This implies the StdinNull configuration option being set to ?yes?. The

 recommended way to start X11 programs at a remote site is with something like ssh -f

 host xterm, which is the same as ssh host xterm if the ForkAfterAuthentication con?

 figuration option is set to ?yes?.

 If the ExitOnForwardFailure configuration option is set to ?yes?, then a client

 started with the ForkAfterAuthentication configuration option being set to ?yes?

 will wait for all remote port forwards to be successfully established before placing

 itself in the background. The argument to this keyword must be yes (same as the -f

 option) or no (the default). Page 9/30

 ForwardAgent

 Specifies whether the connection to the authentication agent (if any) will be for?

 warded to the remote machine. The argument may be yes, no (the default), an ex?

 plicit path to an agent socket or the name of an environment variable (beginning

 with ?$?) in which to find the path.

 Agent forwarding should be enabled with caution. Users with the ability to bypass

 file permissions on the remote host (for the agent's Unix-domain socket) can access

 the local agent through the forwarded connection. An attacker cannot obtain key ma?

 terial from the agent, however they can perform operations on the keys that enable

 them to authenticate using the identities loaded into the agent.

 ForwardX11

 Specifies whether X11 connections will be automatically redirected over the secure

 channel and DISPLAY set. The argument must be yes or no (the default).

 X11 forwarding should be enabled with caution. Users with the ability to bypass

 file permissions on the remote host (for the user's X11 authorization database) can

 access the local X11 display through the forwarded connection. An attacker may then

 be able to perform activities such as keystroke monitoring if the ForwardX11Trusted

 option is also enabled.

 ForwardX11Timeout

 Specify a timeout for untrusted X11 forwarding using the format described in the

 TIME FORMATS section of sshd_config(5). X11 connections received by ssh(1) after

 this time will be refused. Setting ForwardX11Timeout to zero will disable the time?

 out and permit X11 forwarding for the life of the connection. The default is to

 disable untrusted X11 forwarding after twenty minutes has elapsed.

 ForwardX11Trusted

 If this option is set to yes, (the Debian-specific default), remote X11 clients will

 have full access to the original X11 display.

 If this option is set to no (the upstream default), remote X11 clients will be con?

 sidered untrusted and prevented from stealing or tampering with data belonging to

 trusted X11 clients. Furthermore, the xauth(1) token used for the session will be

 set to expire after 20 minutes. Remote clients will be refused access after this

 time.

 See the X11 SECURITY extension specification for full details on the restrictions Page 10/30

 imposed on untrusted clients.

 GatewayPorts

 Specifies whether remote hosts are allowed to connect to local forwarded ports. By

 default, ssh(1) binds local port forwardings to the loopback address. This prevents

 other remote hosts from connecting to forwarded ports. GatewayPorts can be used to

 specify that ssh should bind local port forwardings to the wildcard address, thus

 allowing remote hosts to connect to forwarded ports. The argument must be yes or no

 (the default).

 GlobalKnownHostsFile

 Specifies one or more files to use for the global host key database, separated by

 whitespace. The default is /etc/ssh/ssh_known_hosts, /etc/ssh/ssh_known_hosts2.

 GSSAPIAuthentication

 Specifies whether user authentication based on GSSAPI is allowed. The default is

 no.

 GSSAPIClientIdentity

 If set, specifies the GSSAPI client identity that ssh should use when connecting to

 the server. The default is unset, which means that the default identity will be

 used.

 GSSAPIDelegateCredentials

 Forward (delegate) credentials to the server. The default is no.

 GSSAPIKeyExchange

 Specifies whether key exchange based on GSSAPI may be used. When using GSSAPI key

 exchange the server need not have a host key. The default is ?no?.

 GSSAPIRenewalForcesRekey

 If set to ?yes? then renewal of the client's GSSAPI credentials will force the

 rekeying of the ssh connection. With a compatible server, this will delegate the re?

 newed credentials to a session on the server.

 Checks are made to ensure that credentials are only propagated when the new creden?

 tials match the old ones on the originating client and where the receiving server

 still has the old set in its cache.

 The default is ?no?.

 For this to work GSSAPIKeyExchange needs to be enabled in the server and also used

 by the client. Page 11/30

 GSSAPIServerIdentity

 If set, specifies the GSSAPI server identity that ssh should expect when connecting

 to the server. The default is unset, which means that the expected GSSAPI server

 identity will be determined from the target hostname.

 GSSAPITrustDns

 Set to ?yes? to indicate that the DNS is trusted to securely canonicalize the name

 of the host being connected to. If ?no?, the hostname entered on the command line

 will be passed untouched to the GSSAPI library. The default is ?no?.

 GSSAPIKexAlgorithms

 The list of key exchange algorithms that are offered for GSSAPI key exchange. Possi?

 ble values are

 gss-gex-sha1-,

 gss-group1-sha1-,

 gss-group14-sha1-,

 gss-group14-sha256-,

 gss-group16-sha512-,

 gss-nistp256-sha256-,

 gss-curve25519-sha256-

 The default is

?gss-group14-sha256-,gss-group16-sha512-,gss-nistp256-sha256-,gss-curve25519-sha256-,gss-gex-sha1-,gss-group14-sh

a1-?.

 This option only applies to connections using GSSAPI.

 HashKnownHosts

 Indicates that ssh(1) should hash host names and addresses when they are added to

 ~/.ssh/known_hosts. These hashed names may be used normally by ssh(1) and sshd(8),

 but they do not visually reveal identifying information if the file's contents are

 disclosed. The default is no. Note that existing names and addresses in known

 hosts files will not be converted automatically, but may be manually hashed using

 ssh-keygen(1). Use of this option may break facilities such as tab-completion that

 rely on being able to read unhashed host names from ~/.ssh/known_hosts.

 HostbasedAcceptedAlgorithms

 Specifies the signature algorithms that will be used for hostbased authentication as Page 12/30

 a comma-separated list of patterns. Alternately if the specified list begins with a

 ?+? character, then the specified signature algorithms will be appended to the de?

 fault set instead of replacing them. If the specified list begins with a ?-? char?

 acter, then the specified signature algorithms (including wildcards) will be removed

 from the default set instead of replacing them. If the specified list begins with a

 ?^? character, then the specified signature algorithms will be placed at the head of

 the default set. The default for this option is:

 ssh-ed25519-cert-v01@openssh.com,

 ecdsa-sha2-nistp256-cert-v01@openssh.com,

 ecdsa-sha2-nistp384-cert-v01@openssh.com,

 ecdsa-sha2-nistp521-cert-v01@openssh.com,

 sk-ssh-ed25519-cert-v01@openssh.com,

 sk-ecdsa-sha2-nistp256-cert-v01@openssh.com,

 rsa-sha2-512-cert-v01@openssh.com,

 rsa-sha2-256-cert-v01@openssh.com,

 ssh-ed25519,

 ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

 sk-ssh-ed25519@openssh.com,

 sk-ecdsa-sha2-nistp256@openssh.com,

 rsa-sha2-512,rsa-sha2-256

 The -Q option of ssh(1) may be used to list supported signature algorithms. This

 was formerly named HostbasedKeyTypes.

 HostbasedAuthentication

 Specifies whether to try rhosts based authentication with public key authentication.

 The argument must be yes or no (the default).

 HostKeyAlgorithms

 Specifies the host key signature algorithms that the client wants to use in order of

 preference. Alternately if the specified list begins with a ?+? character, then the

 specified signature algorithms will be appended to the default set instead of re?

 placing them. If the specified list begins with a ?-? character, then the specified

 signature algorithms (including wildcards) will be removed from the default set in?

 stead of replacing them. If the specified list begins with a ?^? character, then

 the specified signature algorithms will be placed at the head of the default set. Page 13/30

 The default for this option is:

 ssh-ed25519-cert-v01@openssh.com,

 ecdsa-sha2-nistp256-cert-v01@openssh.com,

 ecdsa-sha2-nistp384-cert-v01@openssh.com,

 ecdsa-sha2-nistp521-cert-v01@openssh.com,

 sk-ssh-ed25519-cert-v01@openssh.com,

 sk-ecdsa-sha2-nistp256-cert-v01@openssh.com,

 rsa-sha2-512-cert-v01@openssh.com,

 rsa-sha2-256-cert-v01@openssh.com,

 ssh-ed25519,

 ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

 sk-ecdsa-sha2-nistp256@openssh.com,

 sk-ssh-ed25519@openssh.com,

 rsa-sha2-512,rsa-sha2-256

 If hostkeys are known for the destination host then this default is modified to pre?

 fer their algorithms.

 The list of available signature algorithms may also be obtained using "ssh -Q

 HostKeyAlgorithms".

 HostKeyAlias

 Specifies an alias that should be used instead of the real host name when looking up

 or saving the host key in the host key database files and when validating host cer?

 tificates. This option is useful for tunneling SSH connections or for multiple

 servers running on a single host.

 Hostname

 Specifies the real host name to log into. This can be used to specify nicknames or

 abbreviations for hosts. Arguments to Hostname accept the tokens described in the

 TOKENS section. Numeric IP addresses are also permitted (both on the command line

 and in Hostname specifications). The default is the name given on the command line.

 IdentitiesOnly

 Specifies that ssh(1) should only use the configured authentication identity and

 certificate files (either the default files, or those explicitly configured in the

 ssh_config files or passed on the ssh(1) command-line), even if ssh-agent(1) or a

 PKCS11Provider or SecurityKeyProvider offers more identities. The argument to this Page 14/30

 keyword must be yes or no (the default). This option is intended for situations

 where ssh-agent offers many different identities.

 IdentityAgent

 Specifies the UNIX-domain socket used to communicate with the authentication agent.

 This option overrides the SSH_AUTH_SOCK environment variable and can be used to se?

 lect a specific agent. Setting the socket name to none disables the use of an au?

 thentication agent. If the string "SSH_AUTH_SOCK" is specified, the location of the

 socket will be read from the SSH_AUTH_SOCK environment variable. Otherwise if the

 specified value begins with a ?$? character, then it will be treated as an environ?

 ment variable containing the location of the socket.

 Arguments to IdentityAgent may use the tilde syntax to refer to a user's home direc?

 tory, the tokens described in the TOKENS section and environment variables as de?

 scribed in the ENVIRONMENT VARIABLES section.

 IdentityFile

 Specifies a file from which the user's DSA, ECDSA, authenticator-hosted ECDSA,

 Ed25519, authenticator-hosted Ed25519 or RSA authentication identity is read. The

 default is ~/.ssh/id_rsa, ~/.ssh/id_ecdsa, ~/.ssh/id_ecdsa_sk, ~/.ssh/id_ed25519,

 ~/.ssh/id_ed25519_sk and ~/.ssh/id_dsa. Additionally, any identities represented by

 the authentication agent will be used for authentication unless IdentitiesOnly is

 set. If no certificates have been explicitly specified by CertificateFile, ssh(1)

 will try to load certificate information from the filename obtained by appending

 -cert.pub to the path of a specified IdentityFile.

 Arguments to IdentityFile may use the tilde syntax to refer to a user's home direc?

 tory or the tokens described in the TOKENS section.

 It is possible to have multiple identity files specified in configuration files; all

 these identities will be tried in sequence. Multiple IdentityFile directives will

 add to the list of identities tried (this behaviour differs from that of other con?

 figuration directives).

 IdentityFile may be used in conjunction with IdentitiesOnly to select which identi?

 ties in an agent are offered during authentication. IdentityFile may also be used

 in conjunction with CertificateFile in order to provide any certificate also needed

 for authentication with the identity.

 IgnoreUnknown Page 15/30

 Specifies a pattern-list of unknown options to be ignored if they are encountered in

 configuration parsing. This may be used to suppress errors if ssh_config contains

 options that are unrecognised by ssh(1). It is recommended that IgnoreUnknown be

 listed early in the configuration file as it will not be applied to unknown options

 that appear before it.

 Include

 Include the specified configuration file(s). Multiple pathnames may be specified

 and each pathname may contain glob(7) wildcards and, for user configurations, shell-

 like ?~? references to user home directories. Wildcards will be expanded and pro?

 cessed in lexical order. Files without absolute paths are assumed to be in ~/.ssh

 if included in a user configuration file or /etc/ssh if included from the system

 configuration file. Include directive may appear inside a Match or Host block to

 perform conditional inclusion.

 IPQoS Specifies the IPv4 type-of-service or DSCP class for connections. Accepted values

 are af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, cs0,

 cs1, cs2, cs3, cs4, cs5, cs6, cs7, ef, le, lowdelay, throughput, reliability, a nu?

 meric value, or none to use the operating system default. This option may take one

 or two arguments, separated by whitespace. If one argument is specified, it is used

 as the packet class unconditionally. If two values are specified, the first is au?

 tomatically selected for interactive sessions and the second for non-interactive

 sessions. The default is lowdelay for interactive sessions and throughput for non-

 interactive sessions.

 KbdInteractiveAuthentication

 Specifies whether to use keyboard-interactive authentication. The argument to this

 keyword must be yes (the default) or no. ChallengeResponseAuthentication is a dep?

 recated alias for this.

 KbdInteractiveDevices

 Specifies the list of methods to use in keyboard-interactive authentication. Multi?

 ple method names must be comma-separated. The default is to use the server speci?

 fied list. The methods available vary depending on what the server supports. For

 an OpenSSH server, it may be zero or more of: bsdauth and pam.

 KexAlgorithms

 Specifies the available KEX (Key Exchange) algorithms. Multiple algorithms must be Page 16/30

 comma-separated. If the specified list begins with a ?+? character, then the speci?

 fied algorithms will be appended to the default set instead of replacing them. If

 the specified list begins with a ?-? character, then the specified algorithms (in?

 cluding wildcards) will be removed from the default set instead of replacing them.

 If the specified list begins with a ?^? character, then the specified algorithms

 will be placed at the head of the default set. The default is:

 curve25519-sha256,curve25519-sha256@libssh.org,

 ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,

 sntrup761x25519-sha512@openssh.com,

 diffie-hellman-group-exchange-sha256,

 diffie-hellman-group16-sha512,

 diffie-hellman-group18-sha512,

 diffie-hellman-group14-sha256

 The list of available key exchange algorithms may also be obtained using "ssh -Q

 kex".

 KnownHostsCommand

 Specifies a command to use to obtain a list of host keys, in addition to those

 listed in UserKnownHostsFile and GlobalKnownHostsFile. This command is executed af?

 ter the files have been read. It may write host key lines to standard output in

 identical format to the usual files (described in the VERIFYING HOST KEYS section in

 ssh(1)). Arguments to KnownHostsCommand accept the tokens described in the TOKENS

 section. The command may be invoked multiple times per connection: once when pre?

 paring the preference list of host key algorithms to use, again to obtain the host

 key for the requested host name and, if CheckHostIP is enabled, one more time to ob?

 tain the host key matching the server's address. If the command exits abnormally or

 returns a non-zero exit status then the connection is terminated.

 LocalCommand

 Specifies a command to execute on the local machine after successfully connecting to

 the server. The command string extends to the end of the line, and is executed with

 the user's shell. Arguments to LocalCommand accept the tokens described in the

 TOKENS section.

 The command is run synchronously and does not have access to the session of the

 ssh(1) that spawned it. It should not be used for interactive commands. Page 17/30

 This directive is ignored unless PermitLocalCommand has been enabled.

 LocalForward

 Specifies that a TCP port on the local machine be forwarded over the secure channel

 to the specified host and port from the remote machine. The first argument speci?

 fies the listener and may be [bind_address:]port or a Unix domain socket path. The

 second argument is the destination and may be host:hostport or a Unix domain socket

 path if the remote host supports it.

 IPv6 addresses can be specified by enclosing addresses in square brackets. Multiple

 forwardings may be specified, and additional forwardings can be given on the command

 line. Only the superuser can forward privileged ports. By default, the local port

 is bound in accordance with the GatewayPorts setting. However, an explicit

 bind_address may be used to bind the connection to a specific address. The

 bind_address of localhost indicates that the listening port be bound for local use

 only, while an empty address or ?*? indicates that the port should be available from

 all interfaces. Unix domain socket paths may use the tokens described in the TOKENS

 section and environment variables as described in the ENVIRONMENT VARIABLES section.

 LogLevel

 Gives the verbosity level that is used when logging messages from ssh(1). The pos?

 sible values are: QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG, DEBUG1, DEBUG2, and DE?

 BUG3. The default is INFO. DEBUG and DEBUG1 are equivalent. DEBUG2 and DEBUG3

 each specify higher levels of verbose output.

 LogVerbose

 Specify one or more overrides to LogLevel. An override consists of a pattern lists

 that matches the source file, function and line number to force detailed logging

 for. For example, an override pattern of:

 kex.c:*:1000,*:kex_exchange_identification():*,packet.c:*

 would enable detailed logging for line 1000 of kex.c, everything in the

 kex_exchange_identification() function, and all code in the packet.c file. This op?

 tion is intended for debugging and no overrides are enabled by default.

 MACs Specifies the MAC (message authentication code) algorithms in order of preference.

 The MAC algorithm is used for data integrity protection. Multiple algorithms must

 be comma-separated. If the specified list begins with a ?+? character, then the

 specified algorithms will be appended to the default set instead of replacing them. Page 18/30

 If the specified list begins with a ?-? character, then the specified algorithms

 (including wildcards) will be removed from the default set instead of replacing

 them. If the specified list begins with a ?^? character, then the specified algo?

 rithms will be placed at the head of the default set.

 The algorithms that contain "-etm" calculate the MAC after encryption (encrypt-then-

 mac). These are considered safer and their use recommended.

 The default is:

 umac-64-etm@openssh.com,umac-128-etm@openssh.com,

 hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,

 hmac-sha1-etm@openssh.com,

 umac-64@openssh.com,umac-128@openssh.com,

 hmac-sha2-256,hmac-sha2-512,hmac-sha1

 The list of available MAC algorithms may also be obtained using "ssh -Q mac".

 NoHostAuthenticationForLocalhost

 Disable host authentication for localhost (loopback addresses). The argument to

 this keyword must be yes or no (the default).

 NumberOfPasswordPrompts

 Specifies the number of password prompts before giving up. The argument to this

 keyword must be an integer. The default is 3.

 PasswordAuthentication

 Specifies whether to use password authentication. The argument to this keyword must

 be yes (the default) or no.

 PermitLocalCommand

 Allow local command execution via the LocalCommand option or using the !command es?

 cape sequence in ssh(1). The argument must be yes or no (the default).

 PermitRemoteOpen

 Specifies the destinations to which remote TCP port forwarding is permitted when

 RemoteForward is used as a SOCKS proxy. The forwarding specification must be one of

 the following forms:

 PermitRemoteOpen host:port

 PermitRemoteOpen IPv4_addr:port

 PermitRemoteOpen [IPv6_addr]:port

 Multiple forwards may be specified by separating them with whitespace. An argument Page 19/30

 of any can be used to remove all restrictions and permit any forwarding requests.

 An argument of none can be used to prohibit all forwarding requests. The wildcard

 ?*? can be used for host or port to allow all hosts or ports respectively. Other?

 wise, no pattern matching or address lookups are performed on supplied names.

 PKCS11Provider

 Specifies which PKCS#11 provider to use or none to indicate that no provider should

 be used (the default). The argument to this keyword is a path to the PKCS#11 shared

 library ssh(1) should use to communicate with a PKCS#11 token providing keys for

 user authentication.

 Port Specifies the port number to connect on the remote host. The default is 22.

 PreferredAuthentications

 Specifies the order in which the client should try authentication methods. This al?

 lows a client to prefer one method (e.g. keyboard-interactive) over another method

 (e.g. password). The default is:

 gssapi-with-mic,hostbased,publickey,

 keyboard-interactive,password

 ProxyCommand

 Specifies the command to use to connect to the server. The command string extends

 to the end of the line, and is executed using the user's shell ?exec? directive to

 avoid a lingering shell process.

 Arguments to ProxyCommand accept the tokens described in the TOKENS section. The

 command can be basically anything, and should read from its standard input and write

 to its standard output. It should eventually connect an sshd(8) server running on

 some machine, or execute sshd -i somewhere. Host key management will be done using

 the Hostname of the host being connected (defaulting to the name typed by the user).

 Setting the command to none disables this option entirely. Note that CheckHostIP is

 not available for connects with a proxy command.

 This directive is useful in conjunction with nc(1) and its proxy support. For exam?

 ple, the following directive would connect via an HTTP proxy at 192.0.2.0:

 ProxyCommand /usr/bin/nc -X connect -x 192.0.2.0:8080 %h %p

 ProxyJump

 Specifies one or more jump proxies as either [user@]host[:port] or an ssh URI. Mul?

 tiple proxies may be separated by comma characters and will be visited sequentially. Page 20/30

 Setting this option will cause ssh(1) to connect to the target host by first making

 a ssh(1) connection to the specified ProxyJump host and then establishing a TCP for?

 warding to the ultimate target from there. Setting the host to none disables this

 option entirely.

 Note that this option will compete with the ProxyCommand option - whichever is spec?

 ified first will prevent later instances of the other from taking effect.

 Note also that the configuration for the destination host (either supplied via the

 command-line or the configuration file) is not generally applied to jump hosts.

 ~/.ssh/config should be used if specific configuration is required for jump hosts.

 ProxyUseFdpass

 Specifies that ProxyCommand will pass a connected file descriptor back to ssh(1) in?

 stead of continuing to execute and pass data. The default is no.

 PubkeyAcceptedAlgorithms

 Specifies the signature algorithms that will be used for public key authentication

 as a comma-separated list of patterns. If the specified list begins with a ?+?

 character, then the algorithms after it will be appended to the default instead of

 replacing it. If the specified list begins with a ?-? character, then the specified

 algorithms (including wildcards) will be removed from the default set instead of re?

 placing them. If the specified list begins with a ?^? character, then the specified

 algorithms will be placed at the head of the default set. The default for this op?

 tion is:

 ssh-ed25519-cert-v01@openssh.com,

 ecdsa-sha2-nistp256-cert-v01@openssh.com,

 ecdsa-sha2-nistp384-cert-v01@openssh.com,

 ecdsa-sha2-nistp521-cert-v01@openssh.com,

 sk-ssh-ed25519-cert-v01@openssh.com,

 sk-ecdsa-sha2-nistp256-cert-v01@openssh.com,

 rsa-sha2-512-cert-v01@openssh.com,

 rsa-sha2-256-cert-v01@openssh.com,

 ssh-ed25519,

 ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

 sk-ssh-ed25519@openssh.com,

 sk-ecdsa-sha2-nistp256@openssh.com, Page 21/30

 rsa-sha2-512,rsa-sha2-256

 The list of available signature algorithms may also be obtained using "ssh -Q

 PubkeyAcceptedAlgorithms".

 PubkeyAuthentication

 Specifies whether to try public key authentication. The argument to this keyword

 must be yes (the default), no, unbound or host-bound. The final two options enable

 public key authentication while respectively disabling or enabling the OpenSSH host-

 bound authentication protocol extension required for restricted ssh-agent(1) for?

 warding.

 RekeyLimit

 Specifies the maximum amount of data that may be transmitted before the session key

 is renegotiated, optionally followed by a maximum amount of time that may pass be?

 fore the session key is renegotiated. The first argument is specified in bytes and

 may have a suffix of ?K?, ?M?, or ?G? to indicate Kilobytes, Megabytes, or Giga?

 bytes, respectively. The default is between ?1G? and ?4G?, depending on the cipher.

 The optional second value is specified in seconds and may use any of the units docu?

 mented in the TIME FORMATS section of sshd_config(5). The default value for

 RekeyLimit is default none, which means that rekeying is performed after the ci?

 pher's default amount of data has been sent or received and no time based rekeying

 is done.

 RemoteCommand

 Specifies a command to execute on the remote machine after successfully connecting

 to the server. The command string extends to the end of the line, and is executed

 with the user's shell. Arguments to RemoteCommand accept the tokens described in

 the TOKENS section.

 RemoteForward

 Specifies that a TCP port on the remote machine be forwarded over the secure chan?

 nel. The remote port may either be forwarded to a specified host and port from the

 local machine, or may act as a SOCKS 4/5 proxy that allows a remote client to con?

 nect to arbitrary destinations from the local machine. The first argument is the

 listening specification and may be [bind_address:]port or, if the remote host sup?

 ports it, a Unix domain socket path. If forwarding to a specific destination then

 the second argument must be host:hostport or a Unix domain socket path, otherwise if Page 22/30

 no destination argument is specified then the remote forwarding will be established

 as a SOCKS proxy. When acting as a SOCKS proxy the destination of the connection

 can be restricted by PermitRemoteOpen.

 IPv6 addresses can be specified by enclosing addresses in square brackets. Multiple

 forwardings may be specified, and additional forwardings can be given on the command

 line. Privileged ports can be forwarded only when logging in as root on the remote

 machine. Unix domain socket paths may use the tokens described in the TOKENS sec?

 tion and environment variables as described in the ENVIRONMENT VARIABLES section.

 If the port argument is 0, the listen port will be dynamically allocated on the

 server and reported to the client at run time.

 If the bind_address is not specified, the default is to only bind to loopback ad?

 dresses. If the bind_address is ?*? or an empty string, then the forwarding is re?

 quested to listen on all interfaces. Specifying a remote bind_address will only

 succeed if the server's GatewayPorts option is enabled (see sshd_config(5)).

 RequestTTY

 Specifies whether to request a pseudo-tty for the session. The argument may be one

 of: no (never request a TTY), yes (always request a TTY when standard input is a

 TTY), force (always request a TTY) or auto (request a TTY when opening a login ses?

 sion). This option mirrors the -t and -T flags for ssh(1).

 RevokedHostKeys

 Specifies revoked host public keys. Keys listed in this file will be refused for

 host authentication. Note that if this file does not exist or is not readable, then

 host authentication will be refused for all hosts. Keys may be specified as a text

 file, listing one public key per line, or as an OpenSSH Key Revocation List (KRL) as

 generated by ssh-keygen(1). For more information on KRLs, see the KEY REVOCATION

 LISTS section in ssh-keygen(1).

 SecurityKeyProvider

 Specifies a path to a library that will be used when loading any FIDO authenticator-

 hosted keys, overriding the default of using the built-in USB HID support.

 If the specified value begins with a ?$? character, then it will be treated as an

 environment variable containing the path to the library.

 SendEnv

 Specifies what variables from the local environ(7) should be sent to the server. Page 23/30

 The server must also support it, and the server must be configured to accept these

 environment variables. Note that the TERM environment variable is always sent when?

 ever a pseudo-terminal is requested as it is required by the protocol. Refer to

 AcceptEnv in sshd_config(5) for how to configure the server. Variables are speci?

 fied by name, which may contain wildcard characters. Multiple environment variables

 may be separated by whitespace or spread across multiple SendEnv directives.

 See PATTERNS for more information on patterns.

 It is possible to clear previously set SendEnv variable names by prefixing patterns

 with -. The default is not to send any environment variables.

 ServerAliveCountMax

 Sets the number of server alive messages (see below) which may be sent without

 ssh(1) receiving any messages back from the server. If this threshold is reached

 while server alive messages are being sent, ssh will disconnect from the server,

 terminating the session. It is important to note that the use of server alive mes?

 sages is very different from TCPKeepAlive (below). The server alive messages are

 sent through the encrypted channel and therefore will not be spoofable. The TCP

 keepalive option enabled by TCPKeepAlive is spoofable. The server alive mechanism

 is valuable when the client or server depend on knowing when a connection has become

 unresponsive.

 The default value is 3. If, for example, ServerAliveInterval (see below) is set to

 15 and ServerAliveCountMax is left at the default, if the server becomes unrespon?

 sive, ssh will disconnect after approximately 45 seconds.

 ServerAliveInterval

 Sets a timeout interval in seconds after which if no data has been received from the

 server, ssh(1) will send a message through the encrypted channel to request a re?

 sponse from the server. The default is 0, indicating that these messages will not

 be sent to the server, or 300 if the BatchMode option is set (Debian-specific).

 ProtocolKeepAlives and SetupTimeOut are Debian-specific compatibility aliases for

 this option.

 SessionType

 May be used to either request invocation of a subsystem on the remote system, or to

 prevent the execution of a remote command at all. The latter is useful for just

 forwarding ports. The argument to this keyword must be none (same as the -N op? Page 24/30

 tion), subsystem (same as the -s option) or default (shell or command execution).

 SetEnv Directly specify one or more environment variables and their contents to be sent to

 the server. Similarly to SendEnv, with the exception of the TERM variable, the

 server must be prepared to accept the environment variable.

 StdinNull

 Redirects stdin from /dev/null (actually, prevents reading from stdin). Either this

 or the equivalent -n option must be used when ssh is run in the background. The ar?

 gument to this keyword must be yes (same as the -n option) or no (the default).

 StreamLocalBindMask

 Sets the octal file creation mode mask (umask) used when creating a Unix-domain

 socket file for local or remote port forwarding. This option is only used for port

 forwarding to a Unix-domain socket file.

 The default value is 0177, which creates a Unix-domain socket file that is readable

 and writable only by the owner. Note that not all operating systems honor the file

 mode on Unix-domain socket files.

 StreamLocalBindUnlink

 Specifies whether to remove an existing Unix-domain socket file for local or remote

 port forwarding before creating a new one. If the socket file already exists and

 StreamLocalBindUnlink is not enabled, ssh will be unable to forward the port to the

 Unix-domain socket file. This option is only used for port forwarding to a Unix-do?

 main socket file.

 The argument must be yes or no (the default).

 StrictHostKeyChecking

 If this flag is set to yes, ssh(1) will never automatically add host keys to the

 ~/.ssh/known_hosts file, and refuses to connect to hosts whose host key has changed.

 This provides maximum protection against man-in-the-middle (MITM) attacks, though it

 can be annoying when the /etc/ssh/ssh_known_hosts file is poorly maintained or when

 connections to new hosts are frequently made. This option forces the user to manu?

 ally add all new hosts.

 If this flag is set to accept-new then ssh will automatically add new host keys to

 the user's known_hosts file, but will not permit connections to hosts with changed

 host keys. If this flag is set to no or off, ssh will automatically add new host

 keys to the user known hosts files and allow connections to hosts with changed Page 25/30

 hostkeys to proceed, subject to some restrictions. If this flag is set to ask (the

 default), new host keys will be added to the user known host files only after the

 user has confirmed that is what they really want to do, and ssh will refuse to con?

 nect to hosts whose host key has changed. The host keys of known hosts will be ver?

 ified automatically in all cases.

 SyslogFacility

 Gives the facility code that is used when logging messages from ssh(1). The possi?

 ble values are: DAEMON, USER, AUTH, LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5,

 LOCAL6, LOCAL7. The default is USER.

 TCPKeepAlive

 Specifies whether the system should send TCP keepalive messages to the other side.

 If they are sent, death of the connection or crash of one of the machines will be

 properly noticed. This option only uses TCP keepalives (as opposed to using ssh

 level keepalives), so takes a long time to notice when the connection dies. As

 such, you probably want the ServerAliveInterval option as well. However, this means

 that connections will die if the route is down temporarily, and some people find it

 annoying.

 The default is yes (to send TCP keepalive messages), and the client will notice if

 the network goes down or the remote host dies. This is important in scripts, and

 many users want it too.

 To disable TCP keepalive messages, the value should be set to no. See also

 ServerAliveInterval for protocol-level keepalives.

 Tunnel Request tun(4) device forwarding between the client and the server. The argument

 must be yes, point-to-point (layer 3), ethernet (layer 2), or no (the default).

 Specifying yes requests the default tunnel mode, which is point-to-point.

 TunnelDevice

 Specifies the tun(4) devices to open on the client (local_tun) and the server

 (remote_tun).

 The argument must be local_tun[:remote_tun]. The devices may be specified by numer?

 ical ID or the keyword any, which uses the next available tunnel device. If

 remote_tun is not specified, it defaults to any. The default is any:any.

 UpdateHostKeys

 Specifies whether ssh(1) should accept notifications of additional hostkeys from the Page 26/30

 server sent after authentication has completed and add them to UserKnownHostsFile.

 The argument must be yes, no or ask. This option allows learning alternate hostkeys

 for a server and supports graceful key rotation by allowing a server to send re?

 placement public keys before old ones are removed.

 Additional hostkeys are only accepted if the key used to authenticate the host was

 already trusted or explicitly accepted by the user, the host was authenticated via

 UserKnownHostsFile (i.e. not GlobalKnownHostsFile) and the host was authenticated

 using a plain key and not a certificate.

 UpdateHostKeys is enabled by default if the user has not overridden the default

 UserKnownHostsFile setting and has not enabled VerifyHostKeyDNS, otherwise

 UpdateHostKeys will be set to no.

 If UpdateHostKeys is set to ask, then the user is asked to confirm the modifications

 to the known_hosts file. Confirmation is currently incompatible with

 ControlPersist, and will be disabled if it is enabled.

 Presently, only sshd(8) from OpenSSH 6.8 and greater support the

 "hostkeys@openssh.com" protocol extension used to inform the client of all the

 server's hostkeys.

 User Specifies the user to log in as. This can be useful when a different user name is

 used on different machines. This saves the trouble of having to remember to give

 the user name on the command line.

 UserKnownHostsFile

 Specifies one or more files to use for the user host key database, separated by

 whitespace. Each filename may use tilde notation to refer to the user's home direc?

 tory, the tokens described in the TOKENS section and environment variables as de?

 scribed in the ENVIRONMENT VARIABLES section. The default is ~/.ssh/known_hosts,

 ~/.ssh/known_hosts2.

 VerifyHostKeyDNS

 Specifies whether to verify the remote key using DNS and SSHFP resource records. If

 this option is set to yes, the client will implicitly trust keys that match a secure

 fingerprint from DNS. Insecure fingerprints will be handled as if this option was

 set to ask. If this option is set to ask, information on fingerprint match will be

 displayed, but the user will still need to confirm new host keys according to the

 StrictHostKeyChecking option. The default is no. Page 27/30

 See also VERIFYING HOST KEYS in ssh(1).

 VisualHostKey

 If this flag is set to yes, an ASCII art representation of the remote host key fin?

 gerprint is printed in addition to the fingerprint string at login and for unknown

 host keys. If this flag is set to no (the default), no fingerprint strings are

 printed at login and only the fingerprint string will be printed for unknown host

 keys.

 XAuthLocation

 Specifies the full pathname of the xauth(1) program. The default is /usr/bin/xauth.

PATTERNS

 A pattern consists of zero or more non-whitespace characters, ?*? (a wildcard that matches

 zero or more characters), or ??? (a wildcard that matches exactly one character). For exam?

 ple, to specify a set of declarations for any host in the ".co.uk" set of domains, the fol?

 lowing pattern could be used:

 Host *.co.uk

 The following pattern would match any host in the 192.168.0.[0-9] network range:

 Host 192.168.0.?

 A pattern-list is a comma-separated list of patterns. Patterns within pattern-lists may be

 negated by preceding them with an exclamation mark (?!?). For example, to allow a key to be

 used from anywhere within an organization except from the "dialup" pool, the following entry

 (in authorized_keys) could be used:

 from="!*.dialup.example.com,*.example.com"

 Note that a negated match will never produce a positive result by itself. For example, at?

 tempting to match "host3" against the following pattern-list will fail:

 from="!host1,!host2"

 The solution here is to include a term that will yield a positive match, such as a wildcard:

 from="!host1,!host2,*"

TOKENS

 Arguments to some keywords can make use of tokens, which are expanded at runtime:

 %% A literal ?%?.

 %C Hash of %l%h%p%r.

 %d Local user's home directory.

 %f The fingerprint of the server's host key. Page 28/30

 %H The known_hosts hostname or address that is being searched for.

 %h The remote hostname.

 %I A string describing the reason for a KnownHostsCommand execution: either ADDRESS

 when looking up a host by address (only when CheckHostIP is enabled), HOSTNAME

 when searching by hostname, or ORDER when preparing the host key algorithm pref?

 erence list to use for the destination host.

 %i The local user ID.

 %K The base64 encoded host key.

 %k The host key alias if specified, otherwise the original remote hostname given on

 the command line.

 %L The local hostname.

 %l The local hostname, including the domain name.

 %n The original remote hostname, as given on the command line.

 %p The remote port.

 %r The remote username.

 %T The local tun(4) or tap(4) network interface assigned if tunnel forwarding was

 requested, or "NONE" otherwise.

 %t The type of the server host key, e.g. ssh-ed25519.

 %u The local username.

 CertificateFile, ControlPath, IdentityAgent, IdentityFile, KnownHostsCommand, LocalForward,

 Match exec, RemoteCommand, RemoteForward, and UserKnownHostsFile accept the tokens %%, %C,

 %d, %h, %i, %k, %L, %l, %n, %p, %r, and %u.

 KnownHostsCommand additionally accepts the tokens %f, %H, %I, %K and %t.

 Hostname accepts the tokens %% and %h.

 LocalCommand accepts all tokens.

 ProxyCommand accepts the tokens %%, %h, %n, %p, and %r.

ENVIRONMENT VARIABLES

 Arguments to some keywords can be expanded at runtime from environment variables on the

 client by enclosing them in ${}, for example ${HOME}/.ssh would refer to the user's .ssh di?

 rectory. If a specified environment variable does not exist then an error will be returned

 and the setting for that keyword will be ignored.

 The keywords CertificateFile, ControlPath, IdentityAgent, IdentityFile, KnownHostsCommand,

 and UserKnownHostsFile support environment variables. The keywords LocalForward and Page 29/30

 RemoteForward support environment variables only for Unix domain socket paths.

FILES

 ~/.ssh/config

 This is the per-user configuration file. The format of this file is described

 above. This file is used by the SSH client. Because of the potential for abuse,

 this file must have strict permissions: read/write for the user, and not writable by

 others. It may be group-writable provided that the group in question contains only

 the user.

 /etc/ssh/ssh_config

 Systemwide configuration file. This file provides defaults for those values that

 are not specified in the user's configuration file, and for those users who do not

 have a configuration file. This file must be world-readable.

SEE ALSO

 ssh(1)

AUTHORS

 OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron

 Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many

 bugs, re-added newer features and created OpenSSH. Markus Friedl contributed the support

 for SSH protocol versions 1.5 and 2.0.

BSD February 15, 2022 BSD

Page 30/30

