
Rocky Enterprise Linux 9.2 Manual Pages on command 'spufs.7'

$ man spufs.7

SPUFS(7) Linux Programmer's Manual SPUFS(7)

NAME

 spufs - SPU filesystem

DESCRIPTION

 The SPU filesystem is used on PowerPC machines that implement the Cell Broadband Engine

 Architecture in order to access Synergistic Processor Units (SPUs).

 The filesystem provides a name space similar to POSIX shared memory or message queues.

 Users that have write permissions on the filesystem can use spu_create(2) to establish SPU

 contexts under the spufs root directory.

 Every SPU context is represented by a directory containing a predefined set of files.

 These files can be used for manipulating the state of the logical SPU. Users can change

 permissions on the files, but can't add or remove files.

 Mount options

 uid=<uid>

 Set the user owning the mount point; the default is 0 (root).

 gid=<gid>

 Set the group owning the mount point; the default is 0 (root).

 mode=<mode>

 Set the mode of the top-level directory in spufs, as an octal mode string. The de?

 fault is 0775.

 Files

 The files in spufs mostly follow the standard behavior for regular system calls like

 read(2) or write(2), but often support only a subset of the operations supported on regu? Page 1/10

 lar filesystems. This list details the supported operations and the deviations from the

 standard behavior described in the respective man pages.

 All files that support the read(2) operation also support readv(2) and all files that sup?

 port the write(2) operation also support writev(2). All files support the access(2) and

 stat(2) family of operations, but for the latter call, the only fields of the returned

 stat structure that contain reliable information are st_mode, st_nlink, st_uid, and

 st_gid.

 All files support the chmod(2)/fchmod(2) and chown(2)/fchown(2) operations, but will not

 be able to grant permissions that contradict the possible operations (e.g., read access on

 the wbox file).

 The current set of files is:

 /capabilities

 Contains a comma-delimited string representing the capabilities of this SPU con?

 text. Possible capabilities are:

 sched This context may be scheduled.

 step This context can be run in single-step mode, for debugging.

 New capabilities flags may be added in the future.

 /mem the contents of the local storage memory of the SPU. This can be accessed like a

 regular shared memory file and contains both code and data in the address space of

 the SPU. The possible operations on an open mem file are:

 read(2), pread(2), write(2), pwrite(2), lseek(2)

 These operate as usual, with the exception that lseek(2), write(2), and

 pwrite(2) are not supported beyond the end of the file. The file size is

 the size of the local storage of the SPU, which is normally 256 kilobytes.

 mmap(2)

 Mapping mem into the process address space provides access to the SPU local

 storage within the process address space. Only MAP_SHARED mappings are al?

 lowed.

 /regs Contains the saved general-purpose registers of the SPU context. This file con?

 tains the 128-bit values of each register, from register 0 to register 127, in or?

 der. This allows the general-purpose registers to be inspected for debugging.

 Reading to or writing from this file requires that the context is scheduled out, so

 use of this file is not recommended in normal program operation. Page 2/10

 The regs file is not present on contexts that have been created with the SPU_CRE?

 ATE_NOSCHED flag.

 /mbox The first SPU-to-CPU communication mailbox. This file is read-only and can be read

 in units of 4 bytes. The file can be used only in nonblocking mode - even poll(2)

 cannot be used to block on this file. The only possible operation on an open mbox

 file is:

 read(2)

 If count is smaller than four, read(2) returns -1 and sets errno to EINVAL.

 If there is no data available in the mailbox (i.e., the SPU has not sent a

 mailbox message), the return value is set to -1 and errno is set to EAGAIN.

 When data has been read successfully, four bytes are placed in the data buf?

 fer and the value four is returned.

 /ibox The second SPU-to-CPU communication mailbox. This file is similar to the first

 mailbox file, but can be read in blocking I/O mode, thus calling read(2) on an open

 ibox file will block until the SPU has written data to its interrupt mailbox chan?

 nel (unless the file has been opened with O_NONBLOCK, see below). Also, poll(2)

 and similar system calls can be used to monitor for the presence of mailbox data.

 The possible operations on an open ibox file are:

 read(2)

 If count is smaller than four, read(2) returns -1 and sets errno to EINVAL.

 If there is no data available in the mailbox and the file descriptor has

 been opened with O_NONBLOCK, the return value is set to -1 and errno is set

 to EAGAIN.

 If there is no data available in the mailbox and the file descriptor has

 been opened without O_NONBLOCK, the call will block until the SPU writes to

 its interrupt mailbox channel. When data has been read successfully, four

 bytes are placed in the data buffer and the value four is returned.

 poll(2)

 Poll on the ibox file returns (POLLIN | POLLRDNORM) whenever data is avail?

 able for reading.

 /wbox The CPU-to-SPU communication mailbox. It is write-only and can be written in units

 of four bytes. If the mailbox is full, write(2) will block, and poll(2) can be

 used to block until the mailbox is available for writing again. The possible oper? Page 3/10

 ations on an open wbox file are:

 write(2)

 If count is smaller than four, write(2) returns -1 and sets errno to EINVAL.

 If there is no space available in the mailbox and the file descriptor has

 been opened with O_NONBLOCK, the return value is set to -1 and errno is set

 to EAGAIN.

 If there is no space available in the mailbox and the file descriptor has

 been opened without O_NONBLOCK, the call will block until the SPU reads from

 its PPE (PowerPC Processing Element) mailbox channel. When data has been

 written successfully, the system call returns four as its function result.

 poll(2)

 A poll on the wbox file returns (POLLOUT | POLLWRNORM) whenever space is

 available for writing.

 /mbox_stat, /ibox_stat, /wbox_stat

 These are read-only files that contain the length of the current queue of each

 mailbox?that is, how many words can be read from mbox or ibox or how many words can

 be written to wbox without blocking. The files can be read only in four-byte units

 and return a big-endian binary integer number. The only possible operation on an

 open *box_stat file is:

 read(2)

 If count is smaller than four, read(2) returns -1 and sets errno to EINVAL.

 Otherwise, a four-byte value is placed in the data buffer. This value is

 the number of elements that can be read from (for mbox_stat and ibox_stat)

 or written to (for wbox_stat) the respective mailbox without blocking or re?

 turning an EAGAIN error.

 /npc, /decr, /decr_status, /spu_tag_mask, /event_mask, /event_status, /srr0, /lslr

 Internal registers of the SPU. These files contain an ASCII string representing

 the hex value of the specified register. Reads and writes on these files (except

 for npc, see below) require that the SPU context be scheduled out, so frequent ac?

 cess to these files is not recommended for normal program operation.

 The contents of these files are:

 npc Next Program Counter - valid only when the SPU is in a stopped

 state. Page 4/10

 decr SPU Decrementer

 decr_status Decrementer Status

 spu_tag_mask MFC tag mask for SPU DMA

 event_mask Event mask for SPU interrupts

 event_status Number of SPU events pending (read-only)

 srr0 Interrupt Return address register

 lslr Local Store Limit Register

 The possible operations on these files are:

 read(2)

 Reads the current register value. If the register value is larger than the

 buffer passed to the read(2) system call, subsequent reads will continue

 reading from the same buffer, until the end of the buffer is reached.

 When a complete string has been read, all subsequent read operations will

 return zero bytes and a new file descriptor needs to be opened to read a new

 value.

 write(2)

 A write(2) operation on the file sets the register to the value given in the

 string. The string is parsed from the beginning until the first nonnumeric

 character or the end of the buffer. Subsequent writes to the same file de?

 scriptor overwrite the previous setting.

 Except for the npc file, these files are not present on contexts that have

 been created with the SPU_CREATE_NOSCHED flag.

 /fpcr This file provides access to the Floating Point Status and Control Register (fcpr)

 as a binary, four-byte file. The operations on the fpcr file are:

 read(2)

 If count is smaller than four, read(2) returns -1 and sets errno to EINVAL.

 Otherwise, a four-byte value is placed in the data buffer; this is the cur?

 rent value of the fpcr register.

 write(2)

 If count is smaller than four, write(2) returns -1 and sets errno to EINVAL.

 Otherwise, a four-byte value is copied from the data buffer, updating the

 value of the fpcr register.

 /signal1, /signal2 Page 5/10

 The files provide access to the two signal notification channels of an SPU. These

 are read-write files that operate on four-byte words. Writing to one of these

 files triggers an interrupt on the SPU. The value written to the signal files can

 be read from the SPU through a channel read or from host user space through the

 file. After the value has been read by the SPU, it is reset to zero. The possible

 operations on an open signal1 or signal2 file are:

 read(2)

 If count is smaller than four, read(2) returns -1 and sets errno to EINVAL.

 Otherwise, a four-byte value is placed in the data buffer; this is the cur?

 rent value of the specified signal notification register.

 write(2)

 If count is smaller than four, write(2) returns -1 and sets errno to EINVAL.

 Otherwise, a four-byte value is copied from the data buffer, updating the

 value of the specified signal notification register. The signal notifica?

 tion register will either be replaced with the input data or will be updated

 to the bitwise OR operation of the old value and the input data, depending

 on the contents of the signal1_type or signal2_type files respectively.

 /signal1_type, /signal2_type

 These two files change the behavior of the signal1 and signal2 notification files.

 They contain a numeric ASCII string which is read as either "1" or "0". In mode 0

 (overwrite), the hardware replaces the contents of the signal channel with the data

 that is written to it. In mode 1 (logical OR), the hardware accumulates the bits

 that are subsequently written to it. The possible operations on an open sig?

 nal1_type or signal2_type file are:

 read(2)

 When the count supplied to the read(2) call is shorter than the required

 length for the digit (plus a newline character), subsequent reads from the

 same file descriptor will complete the string. When a complete string has

 been read, all subsequent read operations will return zero bytes and a new

 file descriptor needs to be opened to read the value again.

 write(2)

 A write(2) operation on the file sets the register to the value given in the

 string. The string is parsed from the beginning until the first nonnumeric Page 6/10

 character or the end of the buffer. Subsequent writes to the same file de?

 scriptor overwrite the previous setting.

 /mbox_info, /ibox_info, /wbox_info, /dma_into, /proxydma_info

 Read-only files that contain the saved state of the SPU mailboxes and DMA queues.

 This allows the SPU status to be inspected, mainly for debugging. The mbox_info

 and ibox_info files each contain the four-byte mailbox message that has been writ?

 ten by the SPU. If no message has been written to these mailboxes, then contents

 of these files is undefined. The mbox_stat, ibox_stat, and wbox_stat files contain

 the available message count.

 The wbox_info file contains an array of four-byte mailbox messages, which have been

 sent to the SPU. With current CBEA machines, the array is four items in length, so

 up to 4 * 4 = 16 bytes can be read from this file. If any mailbox queue entry is

 empty, then the bytes read at the corresponding location are undefined.

 The dma_info file contains the contents of the SPU MFC DMA queue, represented as

 the following structure:

 struct spu_dma_info {

 uint64_t dma_info_type;

 uint64_t dma_info_mask;

 uint64_t dma_info_status;

 uint64_t dma_info_stall_and_notify;

 uint64_t dma_info_atomic_command_status;

 struct mfc_cq_sr dma_info_command_data[16];

 };

 The last member of this data structure is the actual DMA queue, containing 16 en?

 tries. The mfc_cq_sr structure is defined as:

 struct mfc_cq_sr {

 uint64_t mfc_cq_data0_RW;

 uint64_t mfc_cq_data1_RW;

 uint64_t mfc_cq_data2_RW;

 uint64_t mfc_cq_data3_RW;

 };

 The proxydma_info file contains similar information, but describes the proxy DMA

 queue (i.e., DMAs initiated by entities outside the SPU) instead. The file is in Page 7/10

 the following format:

 struct spu_proxydma_info {

 uint64_t proxydma_info_type;

 uint64_t proxydma_info_mask;

 uint64_t proxydma_info_status;

 struct mfc_cq_sr proxydma_info_command_data[8];

 };

 Accessing these files requires that the SPU context is scheduled out - frequent use

 can be inefficient. These files should not be used for normal program operation.

 These files are not present on contexts that have been created with the SPU_CRE?

 ATE_NOSCHED flag.

 /cntl This file provides access to the SPU Run Control and SPU status registers, as an

 ASCII string. The following operations are supported:

 read(2)

 Reads from the cntl file will return an ASCII string with the hex value of

 the SPU Status register.

 write(2)

 Writes to the cntl file will set the context's SPU Run Control register.

 /mfc Provides access to the Memory Flow Controller of the SPU. Reading from the file

 returns the contents of the SPU's MFC Tag Status register, and writing to the file

 initiates a DMA from the MFC. The following operations are supported:

 write(2)

 Writes to this file need to be in the format of a MFC DMA command, defined

 as follows:

 struct mfc_dma_command {

 int32_t pad; /* reserved */

 uint32_t lsa; /* local storage address */

 uint64_t ea; /* effective address */

 uint16_t size; /* transfer size */

 uint16_t tag; /* command tag */

 uint16_t class; /* class ID */

 uint16_t cmd; /* command opcode */

 }; Page 8/10

 Writes are required to be exactly sizeof(struct mfc_dma_command) bytes in

 size. The command will be sent to the SPU's MFC proxy queue, and the tag

 stored in the kernel (see below).

 read(2)

 Reads the contents of the tag status register. If the file is opened in

 blocking mode (i.e., without O_NONBLOCK), then the read will block until a

 DMA tag (as performed by a previous write) is complete. In nonblocking

 mode, the MFC tag status register will be returned without waiting.

 poll(2)

 Calling poll(2) on the mfc file will block until a new DMA can be started

 (by checking for POLLOUT) or until a previously started DMA (by checking for

 POLLIN) has been completed.

 /mss Provides access to the MFC MultiSource Synchronization (MSS) facility.

 By mmap(2)-ing this file, processes can access the MSS area of the SPU.

 The following operations are supported:

 mmap(2)

 Mapping mss into the process address space gives access to the SPU MSS area

 within the process address space. Only MAP_SHARED mappings are allowed.

 /psmap Provides access to the whole problem-state mapping of the SPU. Applications can

 use this area to interface to the SPU, rather than writing to individual register

 files in spufs.

 The following operations are supported:

 mmap(2)

 Mapping psmap gives a process a direct map of the SPU problem state area.

 Only MAP_SHARED mappings are supported.

 /phys-id

 Read-only file containing the physical SPU number that the SPU context is running

 on. When the context is not running, this file contains the string "-1".

 The physical SPU number is given by an ASCII hex string.

 /object-id

 Allows applications to store (or retrieve) a single 64-bit ID into the context.

 This ID is later used by profiling tools to uniquely identify the context.

 write(2) Page 9/10

 By writing an ASCII hex value into this file, applications can set the ob?

 ject ID of the SPU context. Any previous value of the object ID is over?

 written.

 read(2)

 Reading this file gives an ASCII hex string representing the object ID for

 this SPU context.

EXAMPLES

 /etc/fstab entry

 none /spu spufs gid=spu 0 0

SEE ALSO

 close(2), spu_create(2), spu_run(2), capabilities(7)

 The Cell Broadband Engine Architecture (CBEA) specification

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SPUFS(7)

Page 10/10

