
Rocky Enterprise Linux 9.2 Manual Pages on command 'spu_create.2'

$ man spu_create.2

SPU_CREATE(2) Linux Programmer's Manual SPU_CREATE(2)

NAME

 spu_create - create a new spu context

SYNOPSIS

 #include <sys/types.h>

 #include <sys/spu.h>

 int spu_create(const char *pathname, int flags, mode_t mode,

 int neighbor_fd);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 The spu_create() system call is used on PowerPC machines that implement the Cell Broadband

 Engine Architecture in order to access Synergistic Processor Units (SPUs). It creates a

 new logical context for an SPU in pathname and returns a file descriptor associated with

 it. pathname must refer to a nonexistent directory in the mount point of the SPU filesys?

 tem (spufs). If spu_create() is successful, a directory is created at pathname and it is

 populated with the files described in spufs(7).

 When a context is created, the returned file descriptor can only be passed to spu_run(2),

 used as the dirfd argument to the *at family of system calls (e.g., openat(2)), or closed;

 other operations are not defined. A logical SPU context is destroyed (along with all

 files created within the context's pathname directory) once the last reference to the con?

 text has gone; this usually occurs when the file descriptor returned by spu_create() is

 closed.

 The mode argument (minus any bits set in the process's umask(2)) specifies the permissions Page 1/4

 used for creating the new directory in spufs. See stat(2) for a full list of the possible

 mode values.

 The neighbor_fd is used only when the SPU_CREATE_AFFINITY_SPU flag is specified; see be?

 low.

 The flags argument can be zero or any bitwise OR-ed combination of the following con?

 stants:

 SPU_CREATE_EVENTS_ENABLED

 Rather than using signals for reporting DMA errors, use the event argument to

 spu_run(2).

 SPU_CREATE_GANG

 Create an SPU gang instead of a context. (A gang is a group of SPU contexts that

 are functionally related to each other and which share common scheduling parame?

 ters?priority and policy. In the future, gang scheduling may be implemented caus?

 ing the group to be switched in and out as a single unit.)

 A new directory will be created at the location specified by the pathname argument.

 This gang may be used to hold other SPU contexts, by providing a pathname that is

 within the gang directory to further calls to spu_create().

 SPU_CREATE_NOSCHED

 Create a context that is not affected by the SPU scheduler. Once the context is

 run, it will not be scheduled out until it is destroyed by the creating process.

 Because the context cannot be removed from the SPU, some functionality is disabled

 for SPU_CREATE_NOSCHED contexts. Only a subset of the files will be available in

 this context directory in spufs. Additionally, SPU_CREATE_NOSCHED contexts cannot

 dump a core file when crashing.

 Creating SPU_CREATE_NOSCHED contexts requires the CAP_SYS_NICE capability.

 SPU_CREATE_ISOLATE

 Create an isolated SPU context. Isolated contexts are protected from some PPE

 (PowerPC Processing Element) operations, such as access to the SPU local store and

 the NPC register.

 Creating SPU_CREATE_ISOLATE contexts also requires the SPU_CREATE_NOSCHED flag.

 SPU_CREATE_AFFINITY_SPU (since Linux 2.6.23)

 Create a context with affinity to another SPU context. This affinity information

 is used within the SPU scheduling algorithm. Using this flag requires that a file Page 2/4

 descriptor referring to the other SPU context be passed in the neighbor_fd argu?

 ment.

 SPU_CREATE_AFFINITY_MEM (since Linux 2.6.23)

 Create a context with affinity to system memory. This affinity information is used

 within the SPU scheduling algorithm.

RETURN VALUE

 On success, spu_create() returns a new file descriptor. On error, -1 is returned, and er?

 rno is set to one of the error codes listed below.

ERRORS

 EACCES The current user does not have write access to the spufs(7) mount point.

 EEXIST An SPU context already exists at the given pathname.

 EFAULT pathname is not a valid string pointer in the calling process's address space.

 EINVAL pathname is not a directory in the spufs(7) mount point, or invalid flags have been

 provided.

 ELOOP Too many symbolic links were found while resolving pathname.

 EMFILE The per-process limit on the number of open file descriptors has been reached.

 ENAMETOOLONG

 pathname is too long.

 ENFILE The system-wide limit on the total number of open files has been reached.

 ENODEV An isolated context was requested, but the hardware does not support SPU isolation.

 ENOENT Part of pathname could not be resolved.

 ENOMEM The kernel could not allocate all resources required.

 ENOSPC There are not enough SPU resources available to create a new context or the user-

 specific limit for the number of SPU contexts has been reached.

 ENOSYS The functionality is not provided by the current system, because either the hard?

 ware does not provide SPUs or the spufs module is not loaded.

 ENOTDIR

 A part of pathname is not a directory.

 EPERM The SPU_CREATE_NOSCHED flag has been given, but the user does not have the

 CAP_SYS_NICE capability.

FILES

 pathname must point to a location beneath the mount point of spufs. By convention, it

 gets mounted in /spu. Page 3/4

VERSIONS

 The spu_create() system call was added to Linux in kernel 2.6.16.

CONFORMING TO

 This call is Linux-specific and implemented only on the PowerPC architecture. Programs

 using this system call are not portable.

NOTES

 Glibc does not provide a wrapper for this system call; call it using syscall(2). Note

 however, that spu_create() is meant to be used from libraries that implement a more ab?

 stract interface to SPUs, not to be used from regular applications. See

 ?http://www.bsc.es/projects/deepcomputing/linuxoncell/? for the recommended libraries.

 Prior to the addition of the SPU_CREATE_AFFINITY_SPU flag in Linux 2.6.23, the spu_cre?

 ate() system call took only three arguments (i.e., there was no neighbor_fd argument).

EXAMPLES

 See spu_run(2) for an example of the use of spu_create()

SEE ALSO

 close(2), spu_run(2), capabilities(7), spufs(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SPU_CREATE(2)

Page 4/4

