
Rocky Enterprise Linux 9.2 Manual Pages on command 'socket.2'

$ man socket.2

SOCKET(2) Linux Programmer's Manual SOCKET(2)

NAME

 socket - create an endpoint for communication

SYNOPSIS

 #include <sys/types.h> /* See NOTES */

 #include <sys/socket.h>

 int socket(int domain, int type, int protocol);

DESCRIPTION

 socket() creates an endpoint for communication and returns a file descriptor that refers

 to that endpoint. The file descriptor returned by a successful call will be the lowest-

 numbered file descriptor not currently open for the process.

 The domain argument specifies a communication domain; this selects the protocol family

 which will be used for communication. These families are defined in <sys/socket.h>. The

 formats currently understood by the Linux kernel include:

 Name Purpose Man page

 AF_UNIX Local communication unix(7)

 AF_LOCAL Synonym for AF_UNIX

 AF_INET IPv4 Internet protocols ip(7)

 AF_AX25 Amateur radio AX.25 protocol ax25(4)

 AF_IPX IPX - Novell protocols

 AF_APPLETALK AppleTalk ddp(7)

 AF_X25 ITU-T X.25 / ISO-8208 protocol x25(7)

 AF_INET6 IPv6 Internet protocols ipv6(7) Page 1/6

 AF_DECnet DECet protocol sockets

 AF_KEY Key management protocol, originally de?

 veloped for usage with IPsec

 AF_NETLINK Kernel user interface device netlink(7)

 AF_PACKET Low-level packet interface packet(7)

 AF_RDS Reliable Datagram Sockets (RDS) protocol rds(7)

 rds-rdma(7)

 AF_PPPOX Generic PPP transport layer, for setting

 up L2 tunnels (L2TP and PPPoE)

 AF_LLC Logical link control (IEEE 802.2 LLC)

 protocol

 AF_IB InfiniBand native addressing

 AF_MPLS Multiprotocol Label Switching

 AF_CAN Controller Area Network automotive bus

 protocol

 AF_TIPC TIPC, "cluster domain sockets" protocol

 AF_BLUETOOTH Bluetooth low-level socket protocol

 AF_ALG Interface to kernel crypto API

 AF_VSOCK VSOCK (originally "VMWare VSockets") vsock(7)

 protocol for hypervisor-guest communica?

 tion

 AF_KCM KCM (kernel connection multiplexer) in?

 terface

 AF_XDP XDP (express data path) interface

 Further details of the above address families, as well as information on several other ad?

 dress families, can be found in address_families(7).

 The socket has the indicated type, which specifies the communication semantics. Currently

 defined types are:

 SOCK_STREAM Provides sequenced, reliable, two-way, connection-based byte streams. An

 out-of-band data transmission mechanism may be supported.

 SOCK_DGRAM Supports datagrams (connectionless, unreliable messages of a fixed maximum

 length).

 SOCK_SEQPACKET Provides a sequenced, reliable, two-way connection-based data transmission Page 2/6

 path for datagrams of fixed maximum length; a consumer is required to read

 an entire packet with each input system call.

 SOCK_RAW Provides raw network protocol access.

 SOCK_RDM Provides a reliable datagram layer that does not guarantee ordering.

 SOCK_PACKET Obsolete and should not be used in new programs; see packet(7).

 Some socket types may not be implemented by all protocol families.

 Since Linux 2.6.27, the type argument serves a second purpose: in addition to specifying a

 socket type, it may include the bitwise OR of any of the following values, to modify the

 behavior of socket():

 SOCK_NONBLOCK Set the O_NONBLOCK file status flag on the open file description (see

 open(2)) referred to by the new file descriptor. Using this flag saves

 extra calls to fcntl(2) to achieve the same result.

 SOCK_CLOEXEC Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See

 the description of the O_CLOEXEC flag in open(2) for reasons why this may

 be useful.

 The protocol specifies a particular protocol to be used with the socket. Normally only a

 single protocol exists to support a particular socket type within a given protocol family,

 in which case protocol can be specified as 0. However, it is possible that many protocols

 may exist, in which case a particular protocol must be specified in this manner. The pro?

 tocol number to use is specific to the ?communication domain? in which communication is to

 take place; see protocols(5). See getprotoent(3) on how to map protocol name strings to

 protocol numbers.

 Sockets of type SOCK_STREAM are full-duplex byte streams. They do not preserve record

 boundaries. A stream socket must be in a connected state before any data may be sent or

 received on it. A connection to another socket is created with a connect(2) call. Once

 connected, data may be transferred using read(2) and write(2) calls or some variant of the

 send(2) and recv(2) calls. When a session has been completed a close(2) may be performed.

 Out-of-band data may also be transmitted as described in send(2) and received as described

 in recv(2).

 The communications protocols which implement a SOCK_STREAM ensure that data is not lost or

 duplicated. If a piece of data for which the peer protocol has buffer space cannot be

 successfully transmitted within a reasonable length of time, then the connection is con?

 sidered to be dead. When SO_KEEPALIVE is enabled on the socket the protocol checks in a Page 3/6

 protocol-specific manner if the other end is still alive. A SIGPIPE signal is raised if a

 process sends or receives on a broken stream; this causes naive processes, which do not

 handle the signal, to exit. SOCK_SEQPACKET sockets employ the same system calls as

 SOCK_STREAM sockets. The only difference is that read(2) calls will return only the

 amount of data requested, and any data remaining in the arriving packet will be discarded.

 Also all message boundaries in incoming datagrams are preserved.

 SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named in

 sendto(2) calls. Datagrams are generally received with recvfrom(2), which returns the

 next datagram along with the address of its sender.

 SOCK_PACKET is an obsolete socket type to receive raw packets directly from the device

 driver. Use packet(7) instead.

 An fcntl(2) F_SETOWN operation can be used to specify a process or process group to re?

 ceive a SIGURG signal when the out-of-band data arrives or SIGPIPE signal when a

 SOCK_STREAM connection breaks unexpectedly. This operation may also be used to set the

 process or process group that receives the I/O and asynchronous notification of I/O events

 via SIGIO. Using F_SETOWN is equivalent to an ioctl(2) call with the FIOSETOWN or SIOCSP?

 GRP argument.

 When the network signals an error condition to the protocol module (e.g., using an ICMP

 message for IP) the pending error flag is set for the socket. The next operation on this

 socket will return the error code of the pending error. For some protocols it is possible

 to enable a per-socket error queue to retrieve detailed information about the error; see

 IP_RECVERR in ip(7).

 The operation of sockets is controlled by socket level options. These options are defined

 in <sys/socket.h>. The functions setsockopt(2) and getsockopt(2) are used to set and get

 options.

RETURN VALUE

 On success, a file descriptor for the new socket is returned. On error, -1 is returned,

 and errno is set appropriately.

ERRORS

 EACCES Permission to create a socket of the specified type and/or protocol is denied.

 EAFNOSUPPORT

 The implementation does not support the specified address family.

 EINVAL Unknown protocol, or protocol family not available. Page 4/6

 EINVAL Invalid flags in type.

 EMFILE The per-process limit on the number of open file descriptors has been reached.

 ENFILE The system-wide limit on the total number of open files has been reached.

 ENOBUFS or ENOMEM

 Insufficient memory is available. The socket cannot be created until sufficient

 resources are freed.

 EPROTONOSUPPORT

 The protocol type or the specified protocol is not supported within this domain.

 Other errors may be generated by the underlying protocol modules.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, 4.4BSD.

 The SOCK_NONBLOCK and SOCK_CLOEXEC flags are Linux-specific.

 socket() appeared in 4.2BSD. It is generally portable to/from non-BSD systems supporting

 clones of the BSD socket layer (including System V variants).

NOTES

 POSIX.1 does not require the inclusion of <sys/types.h>, and this header file is not re?

 quired on Linux. However, some historical (BSD) implementations required this header

 file, and portable applications are probably wise to include it.

 The manifest constants used under 4.x BSD for protocol families are PF_UNIX, PF_INET, and

 so on, while AF_UNIX, AF_INET, and so on are used for address families. However, already

 the BSD man page promises: "The protocol family generally is the same as the address fam?

 ily", and subsequent standards use AF_* everywhere.

EXAMPLES

 An example of the use of socket() is shown in getaddrinfo(3).

SEE ALSO

 accept(2), bind(2), close(2), connect(2), fcntl(2), getpeername(2), getsockname(2), get?

 sockopt(2), ioctl(2), listen(2), read(2), recv(2), select(2), send(2), shutdown(2), sock?

 etpair(2), write(2), getprotoent(3), address_families(7), ip(7), socket(7), tcp(7),

 udp(7), unix(7)

 ?An Introductory 4.3BSD Interprocess Communication Tutorial? and ?BSD Interprocess Commu?

 nication Tutorial?, reprinted in UNIX Programmer's Supplementary Documents Volume 1.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the Page 5/6

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 SOCKET(2)

Page 6/6

