
Rocky Enterprise Linux 9.2 Manual Pages on command 'snap-confine.8'

$ man snap-confine.8

SNAP-CONFINE(8)                               snappy                              SNAP-CONFINE(8)

NAME

       snap-confine - internal tool for confining snappy applications

SYNOPSIS

          snap-confine [--classic] [--base BASE] SECURITY_TAG COMMAND [...ARGUMENTS]

DESCRIPTION

       The snap-confine is a program used internally by snapd to construct the execution environ?

       ment for snap applications.

OPTIONS

       The snap-confine program accepts two options:

          --classic requests the so-called _classic_ _confinement_ in which applications are  not

          confined  at  all (like in classic systems, hence the name). This disables the use of a

          dedicated, per-snap mount namespace. The snapd service  generates  permissive  apparmor

          and seccomp profiles that allow everything.

          --base  BASE directs snap-confine to use the given base snap as the root filesystem. If

          omitted it defaults to the core snap. This is derived from snap meta-data by snapd when

          starting the application process.

FEATURES

   Apparmor profiles

       snap-confine  switches to the apparmor profile $SECURITY_TAG. The profile is mandatory and

       snap-confine will refuse to run without it.

       The profile has to be loaded into the kernel prior to using snap-confine.  Typically  this

       is  arranged  for  by snapd. The profile contains rich description of what the application Page 1/4



       process is allowed to do, this includes system calls, file paths, access  patterns,  linux

       capabilities, etc. The apparmor profile can also do extensive dbus mediation. Refer to ap?

       parmor documentation for more details.

   Seccomp profiles

       snap-confine looks for the /var/lib/snapd/seccomp/bpf/$SECURITY_TAG.bin file. This file is

       mandatory  and  snap-confine will refuse to run without it. This file contains the seccomp

       bpf binary program that is loaded into the kernel by snap-confine.

       The file is generated  with  the  /usr/lib/snapd/snap-seccomp  compiler  from  the  $SECU?

       RITY_TAG.src file that uses a custom syntax that describes the set of allowed system calls

       and optionally their arguments. The profile is then used to confine the  started  applica?

       tion.

       As  a security precaution disallowed system calls cause the started application executable

       to be killed by the kernel. In the future this restriction may be lifted to  return  EPERM

       instead.

   Mount profiles

       snap-confine  uses  a helper process, snap-update-ns, to apply the mount namespace profile

       to    freshly    constructed    mount    namespace.    That    tool    looks    for    the

       /var/lib/snapd/mount/snap.$SNAP_NAME.fstab  file.   If  present  it  is  read,  parsed and

       treated like a mostly-typical fstab(5) file.  The mount directives listed there  are  exe?

       cuted in order. All directives must succeed as any failure will abort execution.

       By  default  all  mount  entries  start with the following flags: bind, ro, nodev, nosuid.

       Some of those flags can be reversed by an appropriate option (e.g. rw can cause the  mount

       point to be writable).

       Certain additional features are enabled and conveyed through the use of mount options pre?

       fixed with x-snapd-.

       As a security precaution only bind mounts are supported at this time.

   Sharing of the mount namespace

       As of version 1.0.41 all the applications from the same snap will  share  the  same  mount

       namespace. Applications from different snaps continue to use separate mount namespaces.

ENVIRONMENT

       snap-confine responds to the following environment variables

       SNAP_CONFINE_DEBUG:

              When defined the program will print additional diagnostic information about the ac? Page 2/4



              tions being performed. All the output goes to stderr.

       The following variables are only used when snap-confine is not setuid root.  This is  only

       applicable when testing the program itself.

       SNAPPY_LAUNCHER_INSIDE_TESTS:

              Internal variable that should not be relied upon.

       SNAPPY_LAUNCHER_SECCOMP_PROFILE_DIR:

              Internal variable that should not be relied upon.

       SNAP_USER_DATA:

              Full path to the directory like /home/$LOGNAME/snap/$SNAP_NAME/$SNAP_REVISION.

              This  directory  is created by snap-confine on startup. This is a temporary feature

              that will be merged into snapd's snap-run command. The set of directories that  can

              be created is confined with apparmor.

FILES

       snap-confine and snap-update-ns use the following files:

       /var/lib/snapd/mount/snap.*.fstab:

          Description of the mount profile.

       /var/lib/snapd/seccomp/bpf/*.src:

          Input for the /usr/lib/snapd/snap-seccomp profile compiler.

       /var/lib/snapd/seccomp/bpf/*.bin:

          Compiled seccomp bpf profile programs.

       /run/snapd/ns/:

          Directory used to keep shared mount namespaces.

          snap-confine  internally converts this directory to a private bind mount.  Semantically

          the behavior is identical to the following mount commands:

          mount --bind /run/snapd/ns /run/snapd/ns mount --make-private /run/snapd/ns

       /run/snapd/ns/.lock:

          A flock(2)-based lock file acquired to create and convert /run/snapd/ns/ to  a  private

          bind mount.

       /run/snapd/ns/$SNAP_NAME.lock:

          A  flock(2)-based  lock file acquired to create or join the mount namespace represented

          as /run/snaps/ns/$SNAP_NAME.mnt.

       /run/snapd/ns/$SNAP_NAME.mnt:

          This file can be either: Page 3/4



          ? An empty file that may be seen before the mount namespace is preserved  or  when  the

            mount namespace is unmounted.

          ? A  file belonging to the nsfs file system, representing a fully populated mount name?

            space of a given snap. The file is bind mounted from /proc/self/ns/mnt from the first

            process in any snap.

       /proc/self/mountinfo:

          This  file  is  read to decide if /run/snapd/ns/ needs to be created and converted to a

          private bind mount, as described above.

       Note that the apparmor profile is external to snap-confine and is loaded directly into the

       kernel. The actual apparmor profile is managed by snapd.

BUGS

       Please report all bugs with https://bugs.launchpad.net/snapd/+filebug

AUTHOR

       zygmunt.krynicki@canonical.com

COPYRIGHT

       Canonical Ltd.

2.28                                        2017-09-18                            SNAP-CONFINE(8)

Page 4/4


