
Rocky Enterprise Linux 9.2 Manual Pages on command 'sigaltstack.2'

$ man sigaltstack.2

SIGALTSTACK(2) Linux Programmer's Manual SIGALTSTACK(2)

NAME

 sigaltstack - set and/or get signal stack context

SYNOPSIS

 #include <signal.h>

 int sigaltstack(const stack_t *ss, stack_t *old_ss);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 sigaltstack():

 _XOPEN_SOURCE >= 500

 || /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

DESCRIPTION

 sigaltstack() allows a thread to define a new alternate signal stack and/or retrieve the

 state of an existing alternate signal stack. An alternate signal stack is used during the

 execution of a signal handler if the establishment of that handler (see sigaction(2)) re?

 quested it.

 The normal sequence of events for using an alternate signal stack is the following:

 1. Allocate an area of memory to be used for the alternate signal stack.

 2. Use sigaltstack() to inform the system of the existence and location of the alternate

 signal stack.

 3. When establishing a signal handler using sigaction(2), inform the system that the sig?

 nal handler should be executed on the alternate signal stack by specifying the SA_ON?

 STACK flag. Page 1/6

 The ss argument is used to specify a new alternate signal stack, while the old_ss argument

 is used to retrieve information about the currently established signal stack. If we are

 interested in performing just one of these tasks, then the other argument can be specified

 as NULL.

 The stack_t type used to type the arguments of this function is defined as follows:

 typedef struct {

 void *ss_sp; /* Base address of stack */

 int ss_flags; /* Flags */

 size_t ss_size; /* Number of bytes in stack */

 } stack_t;

 To establish a new alternate signal stack, the fields of this structure are set as fol?

 lows:

 ss.ss_flags

 This field contains either 0, or the following flag:

 SS_AUTODISARM (since Linux 4.7)

 Clear the alternate signal stack settings on entry to the signal handler.

 When the signal handler returns, the previous alternate signal stack set?

 tings are restored.

 This flag was added in order make it safe to switch away from the signal

 handler with swapcontext(3). Without this flag, a subsequently handled sig?

 nal will corrupt the state of the switched-away signal handler. On kernels

 where this flag is not supported, sigaltstack() fails with the error EINVAL

 when this flag is supplied.

 ss.ss_sp

 This field specifies the starting address of the stack. When a signal handler is

 invoked on the alternate stack, the kernel automatically aligns the address given

 in ss.ss_sp to a suitable address boundary for the underlying hardware architec?

 ture.

 ss.ss_size

 This field specifies the size of the stack. The constant SIGSTKSZ is defined to be

 large enough to cover the usual size requirements for an alternate signal stack,

 and the constant MINSIGSTKSZ defines the minimum size required to execute a signal

 handler. Page 2/6

 To disable an existing stack, specify ss.ss_flags as SS_DISABLE. In this case, the kernel

 ignores any other flags in ss.ss_flags and the remaining fields in ss.

 If old_ss is not NULL, then it is used to return information about the alternate signal

 stack which was in effect prior to the call to sigaltstack(). The old_ss.ss_sp and

 old_ss.ss_size fields return the starting address and size of that stack. The

 old_ss.ss_flags may return either of the following values:

 SS_ONSTACK

 The thread is currently executing on the alternate signal stack. (Note that it is

 not possible to change the alternate signal stack if the thread is currently exe?

 cuting on it.)

 SS_DISABLE

 The alternate signal stack is currently disabled.

 Alternatively, this value is returned if the thread is currently executing on an

 alternate signal stack that was established using the SS_AUTODISARM flag. In this

 case, it is safe to switch away from the signal handler with swapcontext(3). It is

 also possible to set up a different alternative signal stack using a further call

 to sigaltstack().

 SS_AUTODISARM

 The alternate signal stack has been marked to be autodisarmed as described above.

 By specifying ss as NULL, and old_ss as a non-NULL value, one can obtain the current set?

 tings for the alternate signal stack without changing them.

RETURN VALUE

 sigaltstack() returns 0 on success, or -1 on failure with errno set to indicate the error.

ERRORS

 EFAULT Either ss or old_ss is not NULL and points to an area outside of the process's ad?

 dress space.

 EINVAL ss is not NULL and the ss_flags field contains an invalid flag.

 ENOMEM The specified size of the new alternate signal stack ss.ss_size was less than MIN?

 SIGSTKSZ.

 EPERM An attempt was made to change the alternate signal stack while it was active (i.e.,

 the thread was already executing on the current alternate signal stack).

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7). Page 3/6

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?sigaltstack() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SUSv2, SVr4.

 The SS_AUTODISARM flag is a Linux extension.

NOTES

 The most common usage of an alternate signal stack is to handle the SIGSEGV signal that is

 generated if the space available for the standard stack is exhausted: in this case, a sig?

 nal handler for SIGSEGV cannot be invoked on the standard stack; if we wish to handle it,

 we must use an alternate signal stack.

 Establishing an alternate signal stack is useful if a thread expects that it may exhaust

 its standard stack. This may occur, for example, because the stack grows so large that it

 encounters the upwardly growing heap, or it reaches a limit established by a call to setr?

 limit(RLIMIT_STACK, &rlim). If the standard stack is exhausted, the kernel sends the

 thread a SIGSEGV signal. In these circumstances the only way to catch this signal is on

 an alternate signal stack.

 On most hardware architectures supported by Linux, stacks grow downward. sigaltstack()

 automatically takes account of the direction of stack growth.

 Functions called from a signal handler executing on an alternate signal stack will also

 use the alternate signal stack. (This also applies to any handlers invoked for other sig?

 nals while the thread is executing on the alternate signal stack.) Unlike the standard

 stack, the system does not automatically extend the alternate signal stack. Exceeding the

 allocated size of the alternate signal stack will lead to unpredictable results.

 A successful call to execve(2) removes any existing alternate signal stack. A child

 process created via fork(2) inherits a copy of its parent's alternate signal stack set?

 tings. The same is also true for a child process created using clone(2), unless the clone

 flags include CLONE_VM and do not include CLONE_VFORK, in which case any alternate signal

 stack that was established in the parent is disabled in the child process.

 sigaltstack() supersedes the older sigstack() call. For backward compatibility, glibc

 also provides sigstack(). All new applications should be written using sigaltstack(). Page 4/6

 History

 4.2BSD had a sigstack() system call. It used a slightly different struct, and had the ma?

 jor disadvantage that the caller had to know the direction of stack growth.

BUGS

 In Linux 2.2 and earlier, the only flag that could be specified in ss.sa_flags was SS_DIS?

 ABLE. In the lead up to the release of the Linux 2.4 kernel, a change was made to allow

 sigaltstack() to allow ss.ss_flags==SS_ONSTACK with the same meaning as ss.ss_flags==0

 (i.e., the inclusion of SS_ONSTACK in ss.ss_flags is a no-op). On other implementations,

 and according to POSIX.1, SS_ONSTACK appears only as a reported flag in old_ss.ss_flags.

 On Linux, there is no need ever to specify SS_ONSTACK in ss.ss_flags, and indeed doing so

 should be avoided on portability grounds: various other systems give an error if SS_ON?

 STACK is specified in ss.ss_flags.

EXAMPLES

 The following code segment demonstrates the use of sigaltstack() (and sigaction(2)) to in?

 stall an alternate signal stack that is employed by a handler for the SIGSEGV signal:

 stack_t ss;

 ss.ss_sp = malloc(SIGSTKSZ);

 if (ss.ss_sp == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 }

 ss.ss_size = SIGSTKSZ;

 ss.ss_flags = 0;

 if (sigaltstack(&ss, NULL) == -1) {

 perror("sigaltstack");

 exit(EXIT_FAILURE);

 }

 sa.sa_flags = SA_ONSTACK;

 sa.sa_handler = handler(); /* Address of a signal handler */

 sigemptyset(&sa.sa_mask);

 if (sigaction(SIGSEGV, &sa, NULL) == -1) {

 perror("sigaction");

 exit(EXIT_FAILURE); Page 5/6

 }

SEE ALSO

 execve(2), setrlimit(2), sigaction(2), siglongjmp(3), sigsetjmp(3), signal(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SIGALTSTACK(2)

Page 6/6

