
Rocky Enterprise Linux 9.2 Manual Pages on command 'shmdt.2'

$ man shmdt.2

SHMOP(2) Linux Programmer's Manual SHMOP(2)

NAME

 shmat, shmdt - System V shared memory operations

SYNOPSIS

 #include <sys/types.h>

 #include <sys/shm.h>

 void *shmat(int shmid, const void *shmaddr, int shmflg);

 int shmdt(const void *shmaddr);

DESCRIPTION

 shmat()

 shmat() attaches the System V shared memory segment identified by shmid to the address

 space of the calling process. The attaching address is specified by shmaddr with one of

 the following criteria:

 ? If shmaddr is NULL, the system chooses a suitable (unused) page-aligned address to at?

 tach the segment.

 ? If shmaddr isn't NULL and SHM_RND is specified in shmflg, the attach occurs at the ad?

 dress equal to shmaddr rounded down to the nearest multiple of SHMLBA.

 ? Otherwise, shmaddr must be a page-aligned address at which the attach occurs.

 In addition to SHM_RND, the following flags may be specified in the shmflg bit-mask argu?

 ment:

 SHM_EXEC (Linux-specific; since Linux 2.6.9)

 Allow the contents of the segment to be executed. The caller must have execute

 permission on the segment. Page 1/8

 SHM_RDONLY

 Attach the segment for read-only access. The process must have read permission for

 the segment. If this flag is not specified, the segment is attached for read and

 write access, and the process must have read and write permission for the segment.

 There is no notion of a write-only shared memory segment.

 SHM_REMAP (Linux-specific)

 This flag specifies that the mapping of the segment should replace any existing

 mapping in the range starting at shmaddr and continuing for the size of the seg?

 ment. (Normally, an EINVAL error would result if a mapping already exists in this

 address range.) In this case, shmaddr must not be NULL.

 The brk(2) value of the calling process is not altered by the attach. The segment will

 automatically be detached at process exit. The same segment may be attached as a read and

 as a read-write one, and more than once, in the process's address space.

 A successful shmat() call updates the members of the shmid_ds structure (see shmctl(2))

 associated with the shared memory segment as follows:

 ? shm_atime is set to the current time.

 ? shm_lpid is set to the process-ID of the calling process.

 ? shm_nattch is incremented by one.

 shmdt()

 shmdt() detaches the shared memory segment located at the address specified by shmaddr

 from the address space of the calling process. The to-be-detached segment must be cur?

 rently attached with shmaddr equal to the value returned by the attaching shmat() call.

 On a successful shmdt() call, the system updates the members of the shmid_ds structure as?

 sociated with the shared memory segment as follows:

 ? shm_dtime is set to the current time.

 ? shm_lpid is set to the process-ID of the calling process.

 ? shm_nattch is decremented by one. If it becomes 0 and the segment is marked for dele?

 tion, the segment is deleted.

RETURN VALUE

 On success, shmat() returns the address of the attached shared memory segment; on error,

 (void *) -1 is returned, and errno is set to indicate the cause of the error.

 On success, shmdt() returns 0; on error -1 is returned, and errno is set to indicate the

 cause of the error. Page 2/8

ERRORS

 When shmat() fails, errno is set to one of the following:

 EACCES The calling process does not have the required permissions for the requested attach

 type, and does not have the CAP_IPC_OWNER capability in the user namespace that

 governs its IPC namespace.

 EIDRM shmid points to a removed identifier.

 EINVAL Invalid shmid value, unaligned (i.e., not page-aligned and SHM_RND was not speci?

 fied) or invalid shmaddr value, or can't attach segment at shmaddr, or SHM_REMAP

 was specified and shmaddr was NULL.

 ENOMEM Could not allocate memory for the descriptor or for the page tables.

 When shmdt() fails, errno is set as follows:

 EINVAL There is no shared memory segment attached at shmaddr; or, shmaddr is not aligned

 on a page boundary.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4.

 In SVID 3 (or perhaps earlier), the type of the shmaddr argument was changed from char *

 into const void *, and the returned type of shmat() from char * into void *.

NOTES

 After a fork(2), the child inherits the attached shared memory segments.

 After an execve(2), all attached shared memory segments are detached from the process.

 Upon _exit(2), all attached shared memory segments are detached from the process.

 Using shmat() with shmaddr equal to NULL is the preferred, portable way of attaching a

 shared memory segment. Be aware that the shared memory segment attached in this way may

 be attached at different addresses in different processes. Therefore, any pointers main?

 tained within the shared memory must be made relative (typically to the starting address

 of the segment), rather than absolute.

 On Linux, it is possible to attach a shared memory segment even if it is already marked to

 be deleted. However, POSIX.1 does not specify this behavior and many other implementa?

 tions do not support it.

 The following system parameter affects shmat():

 SHMLBA Segment low boundary address multiple. When explicitly specifying an attach ad?

 dress in a call to shmat(), the caller should ensure that the address is a multiple

 of this value. This is necessary on some architectures, in order either to ensure Page 3/8

 good CPU cache performance or to ensure that different attaches of the same segment

 have consistent views within the CPU cache. SHMLBA is normally some multiple of

 the system page size. (On many Linux architectures, SHMLBA is the same as the sys?

 tem page size.)

 The implementation places no intrinsic per-process limit on the number of shared memory

 segments (SHMSEG).

EXAMPLES

 The two programs shown below exchange a string using a shared memory segment. Further de?

 tails about the programs are given below. First, we show a shell session demonstrating

 their use.

 In one terminal window, we run the "reader" program, which creates a System V shared mem?

 ory segment and a System V semaphore set. The program prints out the IDs of the created

 objects, and then waits for the semaphore to change value.

 $./svshm_string_read

 shmid = 1114194; semid = 15

 In another terminal window, we run the "writer" program. The "writer" program takes three

 command-line arguments: the IDs of the shared memory segment and semaphore set created by

 the "reader", and a string. It attaches the existing shared memory segment, copies the

 string to the shared memory, and modifies the semaphore value.

 $./svshm_string_write 1114194 15 'Hello, world'

 Returning to the terminal where the "reader" is running, we see that the program has

 ceased waiting on the semaphore and has printed the string that was copied into the shared

 memory segment by the writer:

 Hello, world

 Program source: svshm_string.h

 The following header file is included by the "reader" and "writer" programs.

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/shm.h>

 #include <sys/sem.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h> Page 4/8

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 union semun { /* Used in calls to semctl() */

 int val;

 struct semid_ds * buf;

 unsigned short * array;

 #if defined(__linux__)

 struct seminfo * __buf;

 #endif

 };

 #define MEM_SIZE 4096

 Program source: svshm_string_read.c

 The "reader" program creates a shared memory segment and a semaphore set containing one

 semaphore. It then attaches the shared memory object into its address space and initial?

 izes the semaphore value to 1. Finally, the program waits for the semaphore value to be?

 come 0, and afterwards prints the string that has been copied into the shared memory seg?

 ment by the "writer".

 /* svshm_string_read.c

 Licensed under GNU General Public License v2 or later.

 */

 #include "svshm_string.h"

 int

 main(int argc, char *argv[])

 {

 int semid, shmid;

 union semun arg, dummy;

 struct sembuf sop;

 char *addr;

 /* Create shared memory and semaphore set containing one

 semaphore */

 shmid = shmget(IPC_PRIVATE, MEM_SIZE, IPC_CREAT | 0600);

 if (shmid == -1)

 errExit("shmget"); Page 5/8

 semid = semget(IPC_PRIVATE, 1, IPC_CREAT | 0600);

 if (shmid == -1)

 errExit("shmget");

 /* Attach shared memory into our address space */

 addr = shmat(shmid, NULL, SHM_RDONLY);

 if (addr == (void *) -1)

 errExit("shmat");

 /* Initialize semaphore 0 in set with value 1 */

 arg.val = 1;

 if (semctl(semid, 0, SETVAL, arg) == -1)

 errExit("semctl");

 printf("shmid = %d; semid = %d\n", shmid, semid);

 /* Wait for semaphore value to become 0 */

 sop.sem_num = 0;

 sop.sem_op = 0;

 sop.sem_flg = 0;

 if (semop(semid, &sop, 1) == -1)

 errExit("semop");

 /* Print the string from shared memory */

 printf("%s\n", addr);

 /* Remove shared memory and semaphore set */

 if (shmctl(shmid, IPC_RMID, NULL) == -1)

 errExit("shmctl");

 if (semctl(semid, 0, IPC_RMID, dummy) == -1)

 errExit("semctl");

 exit(EXIT_SUCCESS);

 }

 Program source: svshm_string_write.c

 The writer program takes three command-line arguments: the IDs of the shared memory seg?

 ment and semaphore set that have already been created by the "reader", and a string. It

 attaches the shared memory segment into its address space, and then decrements the sema?

 phore value to 0 in order to inform the "reader" that it can now examine the contents of

 the shared memory. Page 6/8

 /* svshm_string_write.c

 Licensed under GNU General Public License v2 or later.

 */

 #include "svshm_string.h"

 int

 main(int argc, char *argv[])

 {

 int semid, shmid;

 struct sembuf sop;

 char *addr;

 size_t len;

 if (argc != 4) {

 fprintf(stderr, "Usage: %s shmid semid string\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 len = strlen(argv[3]) + 1; /* +1 to include trailing '\0' */

 if (len > MEM_SIZE) {

 fprintf(stderr, "String is too big!\n");

 exit(EXIT_FAILURE);

 }

 /* Get object IDs from command-line */

 shmid = atoi(argv[1]);

 semid = atoi(argv[2]);

 /* Attach shared memory into our address space and copy string

 (including trailing null byte) into memory. */

 addr = shmat(shmid, NULL, 0);

 if (addr == (void *) -1)

 errExit("shmat");

 memcpy(addr, argv[3], len);

 /* Decrement semaphore to 0 */

 sop.sem_num = 0;

 sop.sem_op = -1;

 sop.sem_flg = 0; Page 7/8

 if (semop(semid, &sop, 1) == -1)

 errExit("semop");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 brk(2), mmap(2), shmctl(2), shmget(2), capabilities(7), shm_overview(7), sysvipc(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 SHMOP(2)

Page 8/8

