
Rocky Enterprise Linux 9.2 Manual Pages on command 'shmctl.2'

$ man shmctl.2

SHMCTL(2) Linux Programmer's Manual SHMCTL(2)

NAME

 shmctl - System V shared memory control

SYNOPSIS

 #include <sys/ipc.h>

 #include <sys/shm.h>

 int shmctl(int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION

 shmctl() performs the control operation specified by cmd on the System V shared memory

 segment whose identifier is given in shmid.

 The buf argument is a pointer to a shmid_ds structure, defined in <sys/shm.h> as follows:

 struct shmid_ds {

 struct ipc_perm shm_perm; /* Ownership and permissions */

 size_t shm_segsz; /* Size of segment (bytes) */

 time_t shm_atime; /* Last attach time */

 time_t shm_dtime; /* Last detach time */

 time_t shm_ctime; /* Creation time/time of last

 modification via shmctl() */

 pid_t shm_cpid; /* PID of creator */

 pid_t shm_lpid; /* PID of last shmat(2)/shmdt(2) */

 shmatt_t shm_nattch; /* No. of current attaches */

 ...

 }; Page 1/7

 The fields of the shmid_ds structure are as follows:

 shm_perm This is an ipc_perm structure (see below) that specifies the access permis?

 sions on the shared memory segment.

 shm_segsz Size in bytes of the shared memory segment.

 shm_atime Time of the last shmat(2) system call that attached this segment.

 shm_dtime Time of the last shmdt(2) system call that detached tgis segment.

 shm_ctime Time of creation of segment or time of the last shmctl() IPC_SET operation.

 shm_cpid ID of the process that created the shared memory segment.

 shm_lpid ID of the last process that executed a shmat(2) or shmdt(2) system call on

 this segment.

 shm_nattch Number of processes that have this segment attached.

 The ipc_perm structure is defined as follows (the highlighted fields are settable using

 IPC_SET):

 struct ipc_perm {

 key_t __key; /* Key supplied to shmget(2) */

 uid_t uid; /* Effective UID of owner */

 gid_t gid; /* Effective GID of owner */

 uid_t cuid; /* Effective UID of creator */

 gid_t cgid; /* Effective GID of creator */

 unsigned short mode; /* Permissions + SHM_DEST and

 SHM_LOCKED flags */

 unsigned short __seq; /* Sequence number */

 };

 The least significant 9 bits of the mode field of the ipc_perm structure define the access

 permissions for the shared memory segment. The permission bits are as follows:

 0400 Read by user

 0200 Write by user

 0040 Read by group

 0020 Write by group

 0004 Read by others

 0002 Write by others

 Bits 0100, 0010, and 0001 (the execute bits) are unused by the system. (It is not neces?

 sary to have execute permission on a segment in order to perform a shmat(2) call with the Page 2/7

 SHM_EXEC flag.)

 Valid values for cmd are:

 IPC_STAT

 Copy information from the kernel data structure associated with shmid into the

 shmid_ds structure pointed to by buf. The caller must have read permission on the

 shared memory segment.

 IPC_SET

 Write the values of some members of the shmid_ds structure pointed to by buf to the

 kernel data structure associated with this shared memory segment, updating also its

 shm_ctime member.

 The following fields are updated: shm_perm.uid, shm_perm.gid, and (the least sig?

 nificant 9 bits of) shm_perm.mode.

 The effective UID of the calling process must match the owner (shm_perm.uid) or

 creator (shm_perm.cuid) of the shared memory segment, or the caller must be privi?

 leged.

 IPC_RMID

 Mark the segment to be destroyed. The segment will actually be destroyed only af?

 ter the last process detaches it (i.e., when the shm_nattch member of the associ?

 ated structure shmid_ds is zero). The caller must be the owner or creator of the

 segment, or be privileged. The buf argument is ignored.

 If a segment has been marked for destruction, then the (nonstandard) SHM_DEST flag

 of the shm_perm.mode field in the associated data structure retrieved by IPC_STAT

 will be set.

 The caller must ensure that a segment is eventually destroyed; otherwise its pages

 that were faulted in will remain in memory or swap.

 See also the description of /proc/sys/kernel/shm_rmid_forced in proc(5).

 IPC_INFO (Linux-specific)

 Return information about system-wide shared memory limits and parameters in the

 structure pointed to by buf. This structure is of type shminfo (thus, a cast is

 required), defined in <sys/shm.h> if the _GNU_SOURCE feature test macro is defined:

 struct shminfo {

 unsigned long shmmax; /* Maximum segment size */

 unsigned long shmmin; /* Minimum segment size; Page 3/7

 always 1 */

 unsigned long shmmni; /* Maximum number of segments */

 unsigned long shmseg; /* Maximum number of segments

 that a process can attach;

 unused within kernel */

 unsigned long shmall; /* Maximum number of pages of

 shared memory, system-wide */

 };

 The shmmni, shmmax, and shmall settings can be changed via /proc files of the same

 name; see proc(5) for details.

 SHM_INFO (Linux-specific)

 Return a shm_info structure whose fields contain information about system resources

 consumed by shared memory. This structure is defined in <sys/shm.h> if the

 _GNU_SOURCE feature test macro is defined:

 struct shm_info {

 int used_ids; /* # of currently existing

 segments */

 unsigned long shm_tot; /* Total number of shared

 memory pages */

 unsigned long shm_rss; /* # of resident shared

 memory pages */

 unsigned long shm_swp; /* # of swapped shared

 memory pages */

 unsigned long swap_attempts;

 /* Unused since Linux 2.4 */

 unsigned long swap_successes;

 /* Unused since Linux 2.4 */

 };

 SHM_STAT (Linux-specific)

 Return a shmid_ds structure as for IPC_STAT. However, the shmid argument is not a

 segment identifier, but instead an index into the kernel's internal array that

 maintains information about all shared memory segments on the system.

 SHM_STAT_ANY (Linux-specific, since Linux 4.17) Page 4/7

 Return a shmid_ds structure as for SHM_STAT. However, shm_perm.mode is not checked

 for read access for shmid, meaning that any user can employ this operation (just as

 any user may read /proc/sysvipc/shm to obtain the same information).

 The caller can prevent or allow swapping of a shared memory segment with the following cmd

 values:

 SHM_LOCK (Linux-specific)

 Prevent swapping of the shared memory segment. The caller must fault in any pages

 that are required to be present after locking is enabled. If a segment has been

 locked, then the (nonstandard) SHM_LOCKED flag of the shm_perm.mode field in the

 associated data structure retrieved by IPC_STAT will be set.

 SHM_UNLOCK (Linux-specific)

 Unlock the segment, allowing it to be swapped out.

 In kernels before 2.6.10, only a privileged process could employ SHM_LOCK and SHM_UNLOCK.

 Since kernel 2.6.10, an unprivileged process can employ these operations if its effective

 UID matches the owner or creator UID of the segment, and (for SHM_LOCK) the amount of mem?

 ory to be locked falls within the RLIMIT_MEMLOCK resource limit (see setrlimit(2)).

RETURN VALUE

 A successful IPC_INFO or SHM_INFO operation returns the index of the highest used entry in

 the kernel's internal array recording information about all shared memory segments. (This

 information can be used with repeated SHM_STAT or SHM_STAT_ANY operations to obtain infor?

 mation about all shared memory segments on the system.) A successful SHM_STAT operation

 returns the identifier of the shared memory segment whose index was given in shmid. Other

 operations return 0 on success.

 On error, -1 is returned, and errno is set appropriately.

ERRORS

 EACCES IPC_STAT or SHM_STAT is requested and shm_perm.mode does not allow read access for

 shmid, and the calling process does not have the CAP_IPC_OWNER capability in the

 user namespace that governs its IPC namespace.

 EFAULT The argument cmd has value IPC_SET or IPC_STAT but the address pointed to by buf

 isn't accessible.

 EIDRM shmid points to a removed identifier.

 EINVAL shmid is not a valid identifier, or cmd is not a valid command. Or: for a SHM_STAT

 or SHM_STAT_ANY operation, the index value specified in shmid referred to an array Page 5/7

 slot that is currently unused.

 ENOMEM (In kernels since 2.6.9), SHM_LOCK was specified and the size of the to-be-locked

 segment would mean that the total bytes in locked shared memory segments would ex?

 ceed the limit for the real user ID of the calling process. This limit is defined

 by the RLIMIT_MEMLOCK soft resource limit (see setrlimit(2)).

 EOVERFLOW

 IPC_STAT is attempted, and the GID or UID value is too large to be stored in the

 structure pointed to by buf.

 EPERM IPC_SET or IPC_RMID is attempted, and the effective user ID of the calling process

 is not that of the creator (found in shm_perm.cuid), or the owner (found in

 shm_perm.uid), and the process was not privileged (Linux: did not have the

 CAP_SYS_ADMIN capability).

 Or (in kernels before 2.6.9), SHM_LOCK or SHM_UNLOCK was specified, but the process

 was not privileged (Linux: did not have the CAP_IPC_LOCK capability). (Since Linux

 2.6.9, this error can also occur if the RLIMIT_MEMLOCK is 0 and the caller is not

 privileged.)

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4.

NOTES

 The inclusion of <sys/types.h> and <sys/ipc.h> isn't required on Linux or by any version

 of POSIX. However, some old implementations required the inclusion of these header files,

 and the SVID also documented their inclusion. Applications intended to be portable to

 such old systems may need to include these header files.

 The IPC_INFO, SHM_STAT, and SHM_INFO operations are used by the ipcs(1) program to provide

 information on allocated resources. In the future, these may modified or moved to a /proc

 filesystem interface.

 Linux permits a process to attach (shmat(2)) a shared memory segment that has already been

 marked for deletion using shmctl(IPC_RMID). This feature is not available on other UNIX

 implementations; portable applications should avoid relying on it.

 Various fields in a struct shmid_ds were typed as short under Linux 2.2 and have become

 long under Linux 2.4. To take advantage of this, a recompilation under glibc-2.1.91 or

 later should suffice. (The kernel distinguishes old and new calls by an IPC_64 flag in

 cmd.) Page 6/7

SEE ALSO

 mlock(2), setrlimit(2), shmget(2), shmop(2), capabilities(7), sysvipc(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SHMCTL(2)

Page 7/7

