
Rocky Enterprise Linux 9.2 Manual Pages on command 'sg_write_long.8'

$ man sg_write_long.8

SG_WRITE_LONG(8) SG3_UTILS SG_WRITE_LONG(8)

NAME

 sg_write_long - send SCSI WRITE LONG command

SYNOPSIS

 sg_write_long [--16] [--cor_dis] [--help] [--in=IF] [--lba=LBA] [--pblock] [--verbose]

 [--version] [--wr_uncor] [--xfer_len=BTL] DEVICE

DESCRIPTION

 Send the SCSI WRITE LONG (10 or 16 byte) command to DEVICE. The buffer to be written to

 the DEVICE is filled with 0xff bytes or read from the IF file. This buffer includes the

 logical data (e.g. 512 bytes) and the ECC bytes.

 This utility can be used to generate a MEDIUM ERROR at a specific logical block address.

 This can be useful for testing error handling. Prior to such a test, the sg_dd utility

 could be used to copy the original contents of the logical block address to some safe lo?

 cation. After the test the sg_dd utility could be used to write back the original contents

 of the logical block address. An alternate strategy would be to read the "long" contents

 of the logical block address with sg_read_long utility prior to testing and restore it

 with this utility after testing.

 Take care: If recoverable errors are being injected (e.g. only one or a few bits changed

 so that the ECC is able to correct the data) then care should be taken with the settings

 in the "read write error recovery" mode page. Specifically if the ARRE (for reads) and/or

 AWRE (for writes) are set then recovered errors will cause the lba to be reassigned (and

 the old location to be added to the grown defect list (PLIST)). This is not easily re?

 versed and uses (one of the finite number of) the spare sectors set aside for this pur? Page 1/4

 pose. If in doubt it is probably safest to clear the ARRE and AWRE bits. These bits can be

 checked and modified with the sdparm utility. For example: "sdparm -c AWRE,ARRE /dev/sda"

 will clear the bits until the disk is power cycled.

 In SBC-4 revision 7 all uses of SCSI WRITE LONG (10 and 16 byte) commands were made obso?

 lete apart from the case in which the WR_UNCOR bit is set. The SCSI READ LONG (10 and 16

 byte) commands were made obsolete in the same revision.

OPTIONS

 Arguments to long options are mandatory for short options as well.

 -S, --16

 send a SCSI WRITE LONG (16) command to DEVICE. The default action (in the absence

 of this option) is to send a SCSI WRITE LONG (10) command.

 -c, --cor_dis

 sets the correction disabled (i.e 'COR_DIS') bit. This inhibits various other mech?

 anisms such as automatic block reallocation, error recovery and various informa?

 tional exception conditions being triggered. This bit is relatively new in SBC-3 .

 -h, --help

 output the usage message then exit.

 -i, --in=IF

 read data (binary) from file named IF and use it for the SCSI WRITE LONG command.

 If IF is "-" then stdin is read. If this option is not given then 0xff bytes are

 used as fill.

 -l, --lba=LBA

 where LBA is the logical block address of the sector to overwrite. Defaults to lba

 0 which is a dangerous block to overwrite on a disk that is in use. Assumed to be

 in decimal unless prefixed with '0x' or has a trailing 'h'. If LBA is larger than

 can fit in 32 bits then the --16 option should be used.

 -p, --pblock

 sets the physical block (i.e 'PBLOCK') bit. This instructs DEVICE to use the given

 data (unless --wr_uncor is also given) to write to the physical block specified by

 LBA. The default action is to write to the logical block corresponding to the given

 lba. This bit is relatively new in SBC-3 .

 -v, --verbose

 increase the degree of verbosity (debug messages). Page 2/4

 -V, --version

 output version string then exit.

 -w, --wr_uncor

 sets the "write uncorrected" (i.e 'WR_UNCOR') bit. This instructs the DEVICE to

 flag the given lba (or the physical block that contains it if --pblock is also

 given) as having an unrecoverable error associated with it. Note: no data is trans?

 ferred to DEVICE, other than the command (i.e. the cdb). In the absence of this op?

 tion, the default action is to use the provided data or 0xff bytes (--xfer_len=BTL

 in length) and write it to DEVICE. This bit is relatively new in SBC-3 .

 -x, --xfer_len=BTL

 where BTL is the byte transfer length (default to 520). If the given value (or the

 default) does not match the "long" block size of the device, nothing is written to

 DEVICE and the appropriate xfer_len value may be deduced from the error response

 which is printed (to stderr).

NOTES

 Various numeric arguments (e.g. LBA) may include multiplicative suffixes or be given in

 hexadecimal. See the "NUMERIC ARGUMENTS" section in the sg3_utils(8) man page.

 The 10 byte SCSI WRITE LONG command limits the logical block address to a 32 bit quantity.

 For larger LBAs use the --16 option for the SCSI WRITE LONG (16) command.

EXAMPLES

 This section outlines setting up a block with corrupted data, checking the error condi?

 tion, then restoring useful contents to that sector.

 First, if the data in a sector is important, save it with the sg_read_long utility:

 sg_read_long --lba=0x1234 --out=0x1234_1.img -x BTL /dev/sda

 This utility may need to be executed several time in order to determine what the correct

 value for BTL is. Next use this utility to "corrupt" that sector. That might be done

 with:

 sg_write_long --lba=0x1234 -x BTL /dev/sda

 This will write a sector (and ECC data) of 0xff bytes. Some disks may reject this (at

 least one of the author's does). Another approach is to copy the 0x1234_1.img file (to

 0x1234_2.img in this example) and change some values with a hex editor. Then write the

 changed image with:

 sg_write_long --lba=0x1234 --in=0x1234_2.img -x BTL /dev/sda Page 3/4

 Yet another approach is to use the --wr_uncor option, if supported:

 sg_write_long --lba=0x1234 --wr_uncor /dev/sda

 Next we use the sg_dd utility to check that the sector is corrupted. Here is an example:

 sg_dd if=/dev/sda blk_sgio=1 skip=0x1234 of=. bs=512 count=1 verbose=4

 Notice that the "blk_sgio=1" option is given. This is to make sure that the sector is read

 (and no others) and the error is fully reported. The "blk_sgio=1" option causes the SG_IO

 ioctl to be used by sg_dd rather than the block subsystem.

 Finally we should restore sector 0x1234 to a non-corrupted state. A sector full of zeros

 could be written with:

 sg_dd if=/dev/zero of=/dev/sda blk_sgio=1 seek=0x1234 bs=512 count=1

 This will result in a sector (block) with 512 bytes of 0x0 without a MEDIUM ERROR since

 the ECC and associated data will be regenerated and thus well formed. The 'blk_sgio=1' op?

 tion is even more important in this case as it may stop the block subsystem doing a read

 before write (since the read will most likely fail). Another approach is to write back

 the original contents:

 sg_write_long --lba=0x1234 --in=0x1234_1.img -x BTL /dev/sda

EXIT STATUS

 The exit status of sg_write_long is 0 when it is successful. Otherwise see the

 sg3_utils(8) man page.

AUTHORS

 Written by Saeed Bishara. Further work by Douglas Gilbert.

REPORTING BUGS

 Report bugs to <dgilbert at interlog dot com>.

COPYRIGHT

 Copyright ? 2004-2016 Douglas Gilbert

 This software is distributed under the GPL version 2. There is NO warranty; not even for

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO

 sg_read_long, sg_dd (both in sg3_utils), sdparm(sdparm)

sg3_utils-1.42 January 2016 SG_WRITE_LONG(8)

Page 4/4

