
Rocky Enterprise Linux 9.2 Manual Pages on command 'sg_raw.8'

$ man sg_raw.8

SG_RAW(8) SG3_UTILS SG_RAW(8)

NAME

 sg_raw - send arbitrary SCSI or NVMe command to a device

SYNOPSIS

 sg_raw [--binary] [--cmdfile=CF] [--cmdset=CS] [--enumerate] [--help] [--infile=IFILE]

 [--nosense] [--nvm] [--outfile=OFILE] [--raw] [--readonly] [--request=RLEN] [--scan=FO,LO]

 [--send=SLEN] [--skip=KLEN] [--timeout=SECS] [--verbose] [--version] DEVICE [CDB0 CDB1

 ...]

DESCRIPTION

 This utility sends an arbitrary SCSI command (between 6 and 256 bytes) to the DEVICE.

 There may be no associated data transfer; or data may be read from a file and sent to the

 DEVICE; or data may be received from the DEVICE and then displayed or written to a file.

 If supported by the pass through, bidirectional commands may be sent (i.e. containing both

 data to be sent to the DEVICE and received from the DEVICE).

 The SCSI command may be between 6 and 256 bytes long. Each command byte is specified in

 plain hex format (00..FF) without a prefix or suffix. The command can be given either on

 the command line or via the --cmdfile=CF option. See EXAMPLES section below.

 The commands pass through a generic SCSI interface which is implemented for several oper?

 ating systems including Linux, FreeBSD and Windows.

 Experimental support has been added to send NVMe Admin and NVM commands to the DEVICE.

 Since all NVMe commands are 64 bytes long it is more convenient to use the --cmdfile=CF

 option rather than type the 64 bytes of the NVMe command on the command line. See the sec?

 tion on NVME below. A heuristic based on command length is used to decide if the given Page 1/7

 command is SCSI or NVMe, to override this heuristic use the --cmdset=CS option.

OPTIONS

 Arguments to long options are mandatory for short options as well. The options are ar?

 ranged in alphabetical order based on the long option name.

 -b, --binary

 Dump data in binary form, even when writing to stdout.

 -c, --cmdfile=CF

 CF is the name of a file which contains the command to be executed. Without this

 option the command must be given on the command line, after the options and the DE?

 VICE.

 -C, --cmdset=CS

 CS is a number to indicate which command set (i.e. SCSI or NVMe) to use. 0, the de?

 fault, causes a heuristic based on command length to be used. Use a CS of 1 to

 override that heuristic and choose the SCSI command set. Use a CS of 2 to override

 that heuristic and choose the NVMe command set.

 -h, --help

 Display usage information and exit.

 -i, --infile=IFILE

 Read data from IFILE instead of stdin. This option is ignored if --send is not

 specified.

 -n, --nosense

 Don't display SCSI Sense information.

 -N, --nvm

 When sending NVMe commands, the Admin command set is assumed. To send the NVM com?

 mand set (e.g. the Read and Write (user data) commands) this option needs to be

 given.

 -o, --outfile=OFILE

 Write data received from the DEVICE to OFILE. The data is written in binary. By de?

 fault, data is dumped in hex format to stdout. If OFILE is '-' then data is dumped

 in binary to stdout. This option is ignored if --request is not specified.

 -w, --raw

 interpret CF (i.e. the command file) as containing binary. The default is to assume

 that it contains ASCII hexadecimal. Page 2/7

 -R, --readonly

 Open DEVICE read-only. The default (without this option) is to open it read-write.

 -r, --request=RLEN

 Expect to receive up to RLEN bytes of data from the DEVICE. RLEN may be suffixed

 with 'k' to use kilobytes (1024 bytes) instead of bytes. RLEN is decimal unless it

 has a leading '0x' or a trailing 'h'.

 If RLEN is too small (i.e. either smaller than indicated by the cdb (typically the

 "allocation length" field) and/or smaller than the DEVICE tries to send back) then

 the HBA driver may complain. Making RLEN larger than required should cause no prob?

 lems. Most SCSI "data-in" commands return a data block that contains (in its early

 bytes) a length that the DEVICE would "like" to send back if the "allocation

 length" field in the cdb is large enough. In practice, the DEVICE will return no

 more bytes than indicated in the "allocation length" field of the cdb.

 -Q, --scan=FO,LO

 Scan a range of opcodes (i.e. first byte of each command). The first opcode in the

 scan is FO (which is decimal unless it has a '0x' prefix or 'h' suffix). The last

 opcode in the scan is LO. The maximum value of LO is 255. The remaining bytes of

 the SCSI/NVMe command are as supplied at invocation.

 Warning: this option can be dangerous. Sending somewhat arbitrary commands to a

 device can have unexpected results. It is recommended that this option is used

 with the --cmdset=CS option where CS is 1 or 2 in order to stop the command set

 possibly changing during the scan.

 -s, --send=SLEN

 Read SLEN bytes of data, either from stdin or from a file, and send them to the DE?

 VICE. In the SCSI transport, SLEN becomes the length (in bytes) of the "data-out"

 buffer. SLEN is decimal unless it has a leading '0x' or a trailing 'h'.

 It is the responsibility of the user to make sure that the "data-out" length im?

 plied or stated in the cdb matches SLEN. Note that some common SCSI commands such

 as WRITE(10) have a "transfer length" field whose units are logical blocks (which

 are usually 512 or 4096 bytes long).

 -k, --skip=KLEN

 Skip the first KLEN bytes of the input file or stream. This option is ignored if

 --send is not specified. If --send is given and this option is not given, then zero Page 3/7

 bytes are skipped.

 -t, --timeout=SECS

 Wait up to SECS seconds for command completion (default: 20). Note that if a com?

 mand times out the operating system may start by aborting the command and if that

 is unsuccessful it may attempt to reset the device.

 -v, --verbose

 Increase level of verbosity. Can be used multiple times.

 -V, --version

 Display version and license information and exit.

NOTES

 The sg_inq utility can be used to send an INQUIRY command to a device to determine its pe?

 ripheral device type (e.g. '1' for a streaming device (tape drive)) which determines which

 SCSI command sets a device should support (e.g. SPC and SSC). The sg_vpd utility reads and

 decodes a device's Vital Product Pages which may contain useful information.

 The ability to send more than a 16 byte CDB (in some cases 12 byte CDB) may be restricted

 by the pass-through interface, the low level driver or the transport. In the Linux series

 3 kernels, the bsg driver can handle longer CDBs, block devices (e.g. /dev/sdc) accessed

 via the SG_IO ioctl cannot handle CDBs longer than 16 bytes, and the sg driver can handle

 longer CDBs from lk 3.17 .

 The CDB command name defined by T10 for the given CDB is shown if the '-vv' option is

 given. The command line syntax still needs to be correct, so /dev/null may be used for the

 DEVICE since the CDB command name decoding is done before the DEVICE is checked.

 The intention of the --scan=FO,LO option is to slightly simplify the process of finding

 hidden or undocumented commands. It should be used with care; for example checking for

 vendor specific SCSI commands: 'sg_raw --cmdset=1 --scan=0xc0,0xff /dev/sg1 0 0 0 0 0 0'.

NVME SUPPORT

 Support for NVMe (a.k.a. NVM Express) is currently experimental. NVMe concepts map reason?

 ably well to the SCSI architecture. A SCSI logical unit (LU) is similar to a NVMe name?

 space (although LUN 0 is very common in SCSI while namespace IDs start at 1). A SCSI tar?

 get device is similar to a NVMe controller. SCSI commands vary from 6 to 260 bytes long

 (although SCSI command descriptor blocks (cdb_s) longer than 32 bytes are uncommon) while

 all NVMe commands are currently 64 bytes long. The SCSI architecture makes a clear dis?

 tinction between an initiator (often called a HBA) and a target (device) while (at least Page 4/7

 on the PCIe transport) the NVMe controller plays both roles. This utility defaults to as?

 suming the user provided 64 byte command belongs to NVMe's Admin command set. To issue

 commands from the "NVM" command set, the --nvm option must be given. Admin and NVM com?

 mands are sent to submission queue 0.

 One significant difference is that SCSI uses a big endian representation for integers that

 are longer than 8 bits (i.e. longer than 1 byte) while NVMe uses a little endian represen?

 tation (like most things that have originated from the Intel organisation). NVMe specifi?

 cations talk about Words (16 bits), Double Words (32 bits) and sometimes Quad Words (64

 bits) and has tighter alignment requirements than SCSI.

 One difference that impacts this utility is that NVMe places pointers to host memory in

 its commands while SCSI leaves this detail to whichever transport it is using (e.g. SAS,

 iSCSI, SRP). Since this utility takes the command from the user (either on the command

 line or in a file named CF) but this utility allocates a data-in or data-out buffer as re?

 quired, the user does not know in advance what the address of that buffer will be. Some

 special addresses have been introduced to help with this problem: the address

 0xfffffffffffffffe is interpreted as "use the data-in buffer's address" while

 0xfffffffffffffffd is interpreted as "use the data-out buffer's address". Since NVMe uses

 little endian notation then that first address appears in the NVMe command byte stream as

 "fe" followed by seven "ff"s. A similar arrangement is made for the length of that buffer

 (in bytes), but since that is a 32 byte quantity, the first 4 bytes (all "ff"s) are re?

 moved.

 Several command file examples can be found in the examples directory of this package's

 source tarball: nvme_identify_ctl.hex, nvme_dev_self_test.hex, nvme_read_ctl.hex and

 nvme_write_ctl.hex .

 Beware: the NVMe standard often refers to some of its fields as "0's based". They are

 typically counts of something like the number of blocks to be read. For example in NVMe

 Read command, a "0's based" number of blocks field containing the value 3 means to read 4

 blocks! No, this is not a joke.

EXAMPLES

 These examples, apart from the last one, use Linux device names. For suitable device names

 in other supported Operating Systems see the sg3_utils(8) man page.

 sg_raw /dev/scd0 1b 00 00 00 02 00

 Eject the medium in CD drive /dev/scd0. Page 5/7

 sg_raw -r 1k /dev/sg0 12 00 00 00 60 00

 Perform an INQUIRY on /dev/sg0 and dump the response data (up to 1024 bytes) to

 stdout.

 sg_raw -s 512 -i i512.bin /dev/sda 3b 02 00 00 00 00 00 02 00 00

 Showing an example of writing 512 bytes to a sector on a disk is a little danger?

 ous. Instead this example will read i512.bin (assumed to be 512 bytes long) and use

 the SCSI WRITE BUFFER command to send it to the "data" buffer (that is mode 2).

 This is a safe operation.

 sg_raw -r 512 -o o512.bin /dev/sda 3c 02 00 00 00 00 00 02 00 00

 This will use the SCSI READ BUFFER command to read 512 bytes from the "data" buffer

 (i.e. mode 2) then write it to the o512.bin file. When used in conjunction with

 the previous example, if both commands work then 'cmp i512.bin o512.bin' should

 show a match.

 sg_raw --infile=urandom.bin --send=512 --request=512 --outfile=out.bin "/dev/bsg/7:0:0:0"

 53 00 00 00 00 00 00 00 01 00

 This is a bidirectional XDWRITEREAD(10) command being sent via a Linux bsg device.

 Note that data is being read from "urandom.bin" and sent to the device (data-out)

 while resulting data (data-in) is placed in the "out.bin" file. Also note the

 length of both is 512 bytes which corresponds to the transfer length of 1 (block)

 in the cdb (i.e. the second last byte). urandom.bin can be produced like this:

 dd if=/dev/urandom bs=512 count=1 of=urandom.bin

 sg_raw.exe PhysicalDrive1 a1 0c 0e 00 00 00 00 00 00 e0 00 00

 This example is from Windows and shows a ATA STANDBY IMMEDIATE command being sent

 to PhysicalDrive1. That ATA command is contained within the SCSI ATA

 PASS-THROUGH(12) command (see the SAT or SAT-2 standard at http://www.t10.org). No?

 tice that the STANDBY IMMEDIATE command does not send or receive any additional

 data, however if it fails sense data should be returned and displayed.

EXIT STATUS

 The exit status of sg_raw is 0 when it is successful. Otherwise see the sg3_utils(8) man

 page.

AUTHOR

 Written by Ingo van Lil

REPORTING BUGS Page 6/7

 Report bugs to <inguin at gmx dot de> or to <dgilbert at interlog dot com>.

COPYRIGHT

 Copyright ? 2001-2021 Ingo van Lil

 This software is distributed under the GPL version 2. There is NO warranty; not even for

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO

 sg_inq, sg_vpd, sg3_utils (sg3_utils), plscsi

sg3_utils-1.46 January 2021 SG_RAW(8)

Page 7/7

