
Rocky Enterprise Linux 9.2 Manual Pages on command 'setgroups.2'

$ man setgroups.2

GETGROUPS(2) Linux Programmer's Manual GETGROUPS(2)

NAME

 getgroups, setgroups - get/set list of supplementary group IDs

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 int getgroups(int size, gid_t list[]);

 #include <grp.h>

 int setgroups(size_t size, const gid_t *list);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 setgroups():

 Since glibc 2.19:

 _DEFAULT_SOURCE

 Glibc 2.19 and earlier:

 _BSD_SOURCE

DESCRIPTION

 getgroups() returns the supplementary group IDs of the calling process in list. The argu?

 ment size should be set to the maximum number of items that can be stored in the buffer

 pointed to by list. If the calling process is a member of more than size supplementary

 groups, then an error results.

 It is unspecified whether the effective group ID of the calling process is included in the

 returned list. (Thus, an application should also call getegid(2) and add or remove the

 resulting value.) Page 1/3

 If size is zero, list is not modified, but the total number of supplementary group IDs for

 the process is returned. This allows the caller to determine the size of a dynamically

 allocated list to be used in a further call to getgroups().

 setgroups() sets the supplementary group IDs for the calling process. Appropriate privi?

 leges are required (see the description of the EPERM error, below). The size argument

 specifies the number of supplementary group IDs in the buffer pointed to by list. A

 process can drop all of its supplementary groups with the call:

 setgroups(0, NULL);

RETURN VALUE

 On success, getgroups() returns the number of supplementary group IDs. On error, -1 is

 returned, and errno is set appropriately.

 On success, setgroups() returns 0. On error, -1 is returned, and errno is set appropri?

 ately.

ERRORS

 EFAULT list has an invalid address.

 getgroups() can additionally fail with the following error:

 EINVAL size is less than the number of supplementary group IDs, but is not zero.

 setgroups() can additionally fail with the following errors:

 EINVAL size is greater than NGROUPS_MAX (32 before Linux 2.6.4; 65536 since Linux 2.6.4).

 ENOMEM Out of memory.

 EPERM The calling process has insufficient privilege (the caller does not have the

 CAP_SETGID capability in the user namespace in which it resides).

 EPERM (since Linux 3.19)

 The use of setgroups() is denied in this user namespace. See the description of

 /proc/[pid]/setgroups in user_namespaces(7).

CONFORMING TO

 getgroups(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008.

 setgroups(): SVr4, 4.3BSD. Since setgroups() requires privilege, it is not covered by

 POSIX.1.

NOTES

 A process can have up to NGROUPS_MAX supplementary group IDs in addition to the effective

 group ID. The constant NGROUPS_MAX is defined in <limits.h>. The set of supplementary

 group IDs is inherited from the parent process, and preserved across an execve(2). Page 2/3

 The maximum number of supplementary group IDs can be found at run time using sysconf(3):

 long ngroups_max;

 ngroups_max = sysconf(_SC_NGROUPS_MAX);

 The maximum return value of getgroups() cannot be larger than one more than this value.

 Since Linux 2.6.4, the maximum number of supplementary group IDs is also exposed via the

 Linux-specific read-only file, /proc/sys/kernel/ngroups_max.

 The original Linux getgroups() system call supported only 16-bit group IDs. Subsequently,

 Linux 2.4 added getgroups32(), supporting 32-bit IDs. The glibc getgroups() wrapper func?

 tion transparently deals with the variation across kernel versions.

 C library/kernel differences

 At the kernel level, user IDs and group IDs are a per-thread attribute. However, POSIX

 requires that all threads in a process share the same credentials. The NPTL threading im?

 plementation handles the POSIX requirements by providing wrapper functions for the various

 system calls that change process UIDs and GIDs. These wrapper functions (including the

 one for setgroups()) employ a signal-based technique to ensure that when one thread

 changes credentials, all of the other threads in the process also change their creden?

 tials. For details, see nptl(7).

SEE ALSO

 getgid(2), setgid(2), getgrouplist(3), group_member(3), initgroups(3), capabilities(7),

 credentials(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 GETGROUPS(2)

Page 3/3

