
Rocky Enterprise Linux 9.2 Manual Pages on command 'sendmsg.2'

$ man sendmsg.2

SEND(2) Linux Programmer's Manual SEND(2)

NAME

 send, sendto, sendmsg - send a message on a socket

SYNOPSIS

 #include <sys/types.h>

 #include <sys/socket.h>

 ssize_t send(int sockfd, const void *buf, size_t len, int flags);

 ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,

 const struct sockaddr *dest_addr, socklen_t addrlen);

 ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);

DESCRIPTION

 The system calls send(), sendto(), and sendmsg() are used to transmit a message to another

 socket.

 The send() call may be used only when the socket is in a connected state (so that the in?

 tended recipient is known). The only difference between send() and write(2) is the pres?

 ence of flags. With a zero flags argument, send() is equivalent to write(2). Also, the

 following call

 send(sockfd, buf, len, flags);

 is equivalent to

 sendto(sockfd, buf, len, flags, NULL, 0);

 The argument sockfd is the file descriptor of the sending socket.

 If sendto() is used on a connection-mode (SOCK_STREAM, SOCK_SEQPACKET) socket, the argu?

 ments dest_addr and addrlen are ignored (and the error EISCONN may be returned when they Page 1/6

 are not NULL and 0), and the error ENOTCONN is returned when the socket was not actually

 connected. Otherwise, the address of the target is given by dest_addr with addrlen speci?

 fying its size. For sendmsg(), the address of the target is given by msg.msg_name, with

 msg.msg_namelen specifying its size.

 For send() and sendto(), the message is found in buf and has length len. For sendmsg(),

 the message is pointed to by the elements of the array msg.msg_iov. The sendmsg() call

 also allows sending ancillary data (also known as control information).

 If the message is too long to pass atomically through the underlying protocol, the error

 EMSGSIZE is returned, and the message is not transmitted.

 No indication of failure to deliver is implicit in a send(). Locally detected errors are

 indicated by a return value of -1.

 When the message does not fit into the send buffer of the socket, send() normally blocks,

 unless the socket has been placed in nonblocking I/O mode. In nonblocking mode it would

 fail with the error EAGAIN or EWOULDBLOCK in this case. The select(2) call may be used to

 determine when it is possible to send more data.

 The flags argument

 The flags argument is the bitwise OR of zero or more of the following flags.

 MSG_CONFIRM (since Linux 2.3.15)

 Tell the link layer that forward progress happened: you got a successful reply from

 the other side. If the link layer doesn't get this it will regularly reprobe the

 neighbor (e.g., via a unicast ARP). Valid only on SOCK_DGRAM and SOCK_RAW sockets

 and currently implemented only for IPv4 and IPv6. See arp(7) for details.

 MSG_DONTROUTE

 Don't use a gateway to send out the packet, send to hosts only on directly con?

 nected networks. This is usually used only by diagnostic or routing programs.

 This is defined only for protocol families that route; packet sockets don't.

 MSG_DONTWAIT (since Linux 2.2)

 Enables nonblocking operation; if the operation would block, EAGAIN or EWOULDBLOCK

 is returned. This provides similar behavior to setting the O_NONBLOCK flag (via

 the fcntl(2) F_SETFL operation), but differs in that MSG_DONTWAIT is a per-call op?

 tion, whereas O_NONBLOCK is a setting on the open file description (see open(2)),

 which will affect all threads in the calling process and as well as other processes

 that hold file descriptors referring to the same open file description. Page 2/6

 MSG_EOR (since Linux 2.2)

 Terminates a record (when this notion is supported, as for sockets of type SOCK_SE?

 QPACKET).

 MSG_MORE (since Linux 2.4.4)

 The caller has more data to send. This flag is used with TCP sockets to obtain the

 same effect as the TCP_CORK socket option (see tcp(7)), with the difference that

 this flag can be set on a per-call basis.

 Since Linux 2.6, this flag is also supported for UDP sockets, and informs the ker?

 nel to package all of the data sent in calls with this flag set into a single data?

 gram which is transmitted only when a call is performed that does not specify this

 flag. (See also the UDP_CORK socket option described in udp(7).)

 MSG_NOSIGNAL (since Linux 2.2)

 Don't generate a SIGPIPE signal if the peer on a stream-oriented socket has closed

 the connection. The EPIPE error is still returned. This provides similar behavior

 to using sigaction(2) to ignore SIGPIPE, but, whereas MSG_NOSIGNAL is a per-call

 feature, ignoring SIGPIPE sets a process attribute that affects all threads in the

 process.

 MSG_OOB

 Sends out-of-band data on sockets that support this notion (e.g., of type

 SOCK_STREAM); the underlying protocol must also support out-of-band data.

 sendmsg()

 The definition of the msghdr structure employed by sendmsg() is as follows:

 struct msghdr {

 void *msg_name; /* Optional address */

 socklen_t msg_namelen; /* Size of address */

 struct iovec *msg_iov; /* Scatter/gather array */

 size_t msg_iovlen; /* # elements in msg_iov */

 void *msg_control; /* Ancillary data, see below */

 size_t msg_controllen; /* Ancillary data buffer len */

 int msg_flags; /* Flags (unused) */

 };

 The msg_name field is used on an unconnected socket to specify the target address for a

 datagram. It points to a buffer containing the address; the msg_namelen field should be Page 3/6

 set to the size of the address. For a connected socket, these fields should be specified

 as NULL and 0, respectively.

 The msg_iov and msg_iovlen fields specify scatter-gather locations, as for writev(2).

 You may send control information (ancillary data) using the msg_control and msg_controllen

 members. The maximum control buffer length the kernel can process is limited per socket

 by the value in /proc/sys/net/core/optmem_max; see socket(7). For further information on

 the use of ancillary data in various socket domains, see unix(7) and ip(7).

 The msg_flags field is ignored.

RETURN VALUE

 On success, these calls return the number of bytes sent. On error, -1 is returned, and

 errno is set appropriately.

ERRORS

 These are some standard errors generated by the socket layer. Additional errors may be

 generated and returned from the underlying protocol modules; see their respective manual

 pages.

 EACCES (For UNIX domain sockets, which are identified by pathname) Write permission is de?

 nied on the destination socket file, or search permission is denied for one of the

 directories the path prefix. (See path_resolution(7).)

 (For UDP sockets) An attempt was made to send to a network/broadcast address as

 though it was a unicast address.

 EAGAIN or EWOULDBLOCK

 The socket is marked nonblocking and the requested operation would block.

 POSIX.1-2001 allows either error to be returned for this case, and does not require

 these constants to have the same value, so a portable application should check for

 both possibilities.

 EAGAIN (Internet domain datagram sockets) The socket referred to by sockfd had not previ?

 ously been bound to an address and, upon attempting to bind it to an ephemeral

 port, it was determined that all port numbers in the ephemeral port range are cur?

 rently in use. See the discussion of /proc/sys/net/ipv4/ip_local_port_range in

 ip(7).

 EALREADY

 Another Fast Open is in progress.

 EBADF sockfd is not a valid open file descriptor. Page 4/6

 ECONNRESET

 Connection reset by peer.

 EDESTADDRREQ

 The socket is not connection-mode, and no peer address is set.

 EFAULT An invalid user space address was specified for an argument.

 EINTR A signal occurred before any data was transmitted; see signal(7).

 EINVAL Invalid argument passed.

 EISCONN

 The connection-mode socket was connected already but a recipient was specified.

 (Now either this error is returned, or the recipient specification is ignored.)

 EMSGSIZE

 The socket type requires that message be sent atomically, and the size of the mes?

 sage to be sent made this impossible.

 ENOBUFS

 The output queue for a network interface was full. This generally indicates that

 the interface has stopped sending, but may be caused by transient congestion.

 (Normally, this does not occur in Linux. Packets are just silently dropped when a

 device queue overflows.)

 ENOMEM No memory available.

 ENOTCONN

 The socket is not connected, and no target has been given.

 ENOTSOCK

 The file descriptor sockfd does not refer to a socket.

 EOPNOTSUPP

 Some bit in the flags argument is inappropriate for the socket type.

 EPIPE The local end has been shut down on a connection oriented socket. In this case,

 the process will also receive a SIGPIPE unless MSG_NOSIGNAL is set.

CONFORMING TO

 4.4BSD, SVr4, POSIX.1-2001. These interfaces first appeared in 4.2BSD.

 POSIX.1-2001 describes only the MSG_OOB and MSG_EOR flags. POSIX.1-2008 adds a specifica?

 tion of MSG_NOSIGNAL. The MSG_CONFIRM flag is a Linux extension.

NOTES

 According to POSIX.1-2001, the msg_controllen field of the msghdr structure should be Page 5/6

 typed as socklen_t, and the msg_iovlen field should be typed as int, but glibc currently

 types both as size_t.

 See sendmmsg(2) for information about a Linux-specific system call that can be used to

 transmit multiple datagrams in a single call.

BUGS

 Linux may return EPIPE instead of ENOTCONN.

EXAMPLES

 An example of the use of sendto() is shown in getaddrinfo(3).

SEE ALSO

 fcntl(2), getsockopt(2), recv(2), select(2), sendfile(2), sendmmsg(2), shutdown(2),

 socket(2), write(2), cmsg(3), ip(7), ipv6(7), socket(7), tcp(7), udp(7), unix(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SEND(2)

Page 6/6

