
Rocky Enterprise Linux 9.2 Manual Pages on command 'semver.1'

$ man semver.1

SEMVER(1) SEMVER(1)

NAME

 semver - The semantic versioner for npm

Install

 npm install semver

Usage

 As a node module:

 const semver = require('semver')

 semver.valid('1.2.3') // '1.2.3'

 semver.valid('a.b.c') // null

 semver.clean(' =v1.2.3 ') // '1.2.3'

 semver.satisfies('1.2.3', '1.x || >=2.5.0 || 5.0.0 - 7.2.3') // true

 semver.gt('1.2.3', '9.8.7') // false

 semver.lt('1.2.3', '9.8.7') // true

 semver.minVersion('>=1.0.0') // '1.0.0'

 semver.valid(semver.coerce('v2')) // '2.0.0'

 semver.valid(semver.coerce('42.6.7.9.3-alpha')) // '42.6.7'

 You can also just load the module for the function that you care about, if you'd like to

 minimize your footprint.

 // load the whole API at once in a single object

 const semver = require('semver')

 // or just load the bits you need

 // all of them listed here, just pick and choose what you want Page 1/13

 // classes

 const SemVer = require('semver/classes/semver')

 const Comparator = require('semver/classes/comparator')

 const Range = require('semver/classes/range')

 // functions for working with versions

 const semverParse = require('semver/functions/parse')

 const semverValid = require('semver/functions/valid')

 const semverClean = require('semver/functions/clean')

 const semverInc = require('semver/functions/inc')

 const semverDiff = require('semver/functions/diff')

 const semverMajor = require('semver/functions/major')

 const semverMinor = require('semver/functions/minor')

 const semverPatch = require('semver/functions/patch')

 const semverPrerelease = require('semver/functions/prerelease')

 const semverCompare = require('semver/functions/compare')

 const semverRcompare = require('semver/functions/rcompare')

 const semverCompareLoose = require('semver/functions/compare-loose')

 const semverCompareBuild = require('semver/functions/compare-build')

 const semverSort = require('semver/functions/sort')

 const semverRsort = require('semver/functions/rsort')

 // low-level comparators between versions

 const semverGt = require('semver/functions/gt')

 const semverLt = require('semver/functions/lt')

 const semverEq = require('semver/functions/eq')

 const semverNeq = require('semver/functions/neq')

 const semverGte = require('semver/functions/gte')

 const semverLte = require('semver/functions/lte')

 const semverCmp = require('semver/functions/cmp')

 const semverCoerce = require('semver/functions/coerce')

 // working with ranges

 const semverSatisfies = require('semver/functions/satisfies')

 const semverMaxSatisfying = require('semver/ranges/max-satisfying')

 const semverMinSatisfying = require('semver/ranges/min-satisfying') Page 2/13

 const semverToComparators = require('semver/ranges/to-comparators')

 const semverMinVersion = require('semver/ranges/min-version')

 const semverValidRange = require('semver/ranges/valid')

 const semverOutside = require('semver/ranges/outside')

 const semverGtr = require('semver/ranges/gtr')

 const semverLtr = require('semver/ranges/ltr')

 const semverIntersects = require('semver/ranges/intersects')

 const simplifyRange = require('semver/ranges/simplify')

 const rangeSubset = require('semver/ranges/subset')

 As a command-line utility:

 $ semver -h

 A JavaScript implementation of the https://semver.org/ specification

 Copyright Isaac Z. Schlueter

 Usage: semver [options] <version> [<version> [...]]

 Prints valid versions sorted by SemVer precedence

 Options:

 -r --range <range>

 Print versions that match the specified range.

 -i --increment [<level>]

 Increment a version by the specified level. Level can

 be one of: major, minor, patch, premajor, preminor,

 prepatch, or prerelease. Default level is 'patch'.

 Only one version may be specified.

 --preid <identifier>

 Identifier to be used to prefix premajor, preminor,

 prepatch or prerelease version increments.

 -l --loose

 Interpret versions and ranges loosely

 -p --include-prerelease

 Always include prerelease versions in range matching

 -c --coerce

 Coerce a string into SemVer if possible

 (does not imply --loose) Page 3/13

 --rtl

 Coerce version strings right to left

 --ltr

 Coerce version strings left to right (default)

 Program exits successfully if any valid version satisfies

 all supplied ranges, and prints all satisfying versions.

 If no satisfying versions are found, then exits failure.

 Versions are printed in ascending order, so supplying

 multiple versions to the utility will just sort them.

Versions

 A "version" is described by the v2.0.0 specification found at https://semver.org/.

 A leading "=" or "v" character is stripped off and ignored.

Ranges

 A version range is a set of comparators which specify versions that satisfy the range.

 A comparator is composed of an operator and a version. The set of primitive operators is:

 ? < Less than

 ? <= Less than or equal to

 ? > Greater than

 ? >= Greater than or equal to

 ? = Equal. If no operator is specified, then equality is assumed, so this operator is op?

 tional, but MAY be included.

 For example, the comparator >=1.2.7 would match the versions 1.2.7, 1.2.8, 2.5.3, and

 1.3.9, but not the versions 1.2.6 or 1.1.0.

 Comparators can be joined by whitespace to form a comparator set, which is satisfied by

 the intersection of all of the comparators it includes.

 A range is composed of one or more comparator sets, joined by ||. A version matches a

 range if and only if every comparator in at least one of the ||-separated comparator sets

 is satisfied by the version.

 For example, the range >=1.2.7 <1.3.0 would match the versions 1.2.7, 1.2.8, and 1.2.99,

 but not the versions 1.2.6, 1.3.0, or 1.1.0.

 The range 1.2.7 || >=1.2.9 <2.0.0 would match the versions 1.2.7, 1.2.9, and 1.4.6, but

 not the versions 1.2.8 or 2.0.0.

 Prerelease Tags Page 4/13

 If a version has a prerelease tag (for example, 1.2.3-alpha.3) then it will only be al?

 lowed to satisfy comparator sets if at least one comparator with the same [major, minor,

 patch] tuple also has a prerelease tag.

 For example, the range >1.2.3-alpha.3 would be allowed to match the version 1.2.3-alpha.7,

 but it would not be satisfied by 3.4.5-alpha.9, even though 3.4.5-alpha.9 is technically

 "greater than" 1.2.3-alpha.3 according to the SemVer sort rules. The version range only

 accepts prerelease tags on the 1.2.3 version. The version 3.4.5 would satisfy the range,

 because it does not have a prerelease flag, and 3.4.5 is greater than 1.2.3-alpha.7.

 The purpose for this behavior is twofold. First, prerelease versions frequently are up?

 dated very quickly, and contain many breaking changes that are (by the author's design)

 not yet fit for public consumption. Therefore, by default, they are excluded from range

 matching semantics.

 Second, a user who has opted into using a prerelease version has clearly indicated the in?

 tent to use that specific set of alpha/beta/rc versions. By including a prerelease tag in

 the range, the user is indicating that they are aware of the risk. However, it is still

 not appropriate to assume that they have opted into taking a similar risk on the next set

 of prerelease versions.

 Note that this behavior can be suppressed (treating all prerelease versions as if they

 were normal versions, for the purpose of range matching) by setting the includePrerelease

 flag on the options object to any functions https://github.com/npm/node-semver#functions

 that do range matching.

 Prerelease Identifiers

 The method .inc takes an additional identifier string argument that will append the value

 of the string as a prerelease identifier:

 semver.inc('1.2.3', 'prerelease', 'beta')

 // '1.2.4-beta.0'

 command-line example:

 $ semver 1.2.3 -i prerelease --preid beta

 1.2.4-beta.0

 Which then can be used to increment further:

 $ semver 1.2.4-beta.0 -i prerelease

 1.2.4-beta.1

 Advanced Range Syntax Page 5/13

 Advanced range syntax desugars to primitive comparators in deterministic ways.

 Advanced ranges may be combined in the same way as primitive comparators using white space

 or ||.

 Hyphen Ranges X.Y.Z - A.B.C

 Specifies an inclusive set.

 ? 1.2.3 - 2.3.4 := >=1.2.3 <=2.3.4

 If a partial version is provided as the first version in the inclusive range, then the

 missing pieces are replaced with zeroes.

 ? 1.2 - 2.3.4 := >=1.2.0 <=2.3.4

 If a partial version is provided as the second version in the inclusive range, then all

 versions that start with the supplied parts of the tuple are accepted, but nothing that

 would be greater than the provided tuple parts.

 ? 1.2.3 - 2.3 := >=1.2.3 <2.4.0-0

 ? 1.2.3 - 2 := >=1.2.3 <3.0.0-0

 X-Ranges 1.2.x 1.X 1.2.* *

 Any of X, x, or * may be used to "stand in" for one of the numeric values in the [major,

 minor, patch] tuple.

 ? * := >=0.0.0 (Any version satisfies)

 ? 1.x := >=1.0.0 <2.0.0-0 (Matching major version)

 ? 1.2.x := >=1.2.0 <1.3.0-0 (Matching major and minor versions)

 A partial version range is treated as an X-Range, so the special character is in fact op?

 tional.

 ? "" (empty string) := * := >=0.0.0

 ? 1 := 1.x.x := >=1.0.0 <2.0.0-0

 ? 1.2 := 1.2.x := >=1.2.0 <1.3.0-0

 Tilde Ranges ~1.2.3 ~1.2 ~1

 Allows patch-level changes if a minor version is specified on the comparator. Allows mi?

 nor-level changes if not.

 ? ~1.2.3 := >=1.2.3 <1.(2+1).0 := >=1.2.3 <1.3.0-0

 ? ~1.2 := >=1.2.0 <1.(2+1).0 := >=1.2.0 <1.3.0-0 (Same as 1.2.x)

 ? ~1 := >=1.0.0 <(1+1).0.0 := >=1.0.0 <2.0.0-0 (Same as 1.x)

 ? ~0.2.3 := >=0.2.3 <0.(2+1).0 := >=0.2.3 <0.3.0-0

 ? ~0.2 := >=0.2.0 <0.(2+1).0 := >=0.2.0 <0.3.0-0 (Same as 0.2.x) Page 6/13

 ? ~0 := >=0.0.0 <(0+1).0.0 := >=0.0.0 <1.0.0-0 (Same as 0.x)

 ? ~1.2.3-beta.2 := >=1.2.3-beta.2 <1.3.0-0 Note that prereleases in the 1.2.3 version will

 be allowed, if they are greater than or equal to beta.2. So, 1.2.3-beta.4 would be al?

 lowed, but 1.2.4-beta.2 would not, because it is a prerelease of a different [major, mi?

 nor, patch] tuple.

 Caret Ranges ^1.2.3 ^0.2.5 ^0.0.4

 Allows changes that do not modify the left-most non-zero element in the [major, minor,

 patch] tuple. In other words, this allows patch and minor updates for versions 1.0.0 and

 above, patch updates for versions 0.X >=0.1.0, and no updates for versions 0.0.X.

 Many authors treat a 0.x version as if the x were the major "breaking-change" indicator.

 Caret ranges are ideal when an author may make breaking changes between 0.2.4 and 0.3.0

 releases, which is a common practice. However, it presumes that there will not be break?

 ing changes between 0.2.4 and 0.2.5. It allows for changes that are presumed to be addi?

 tive (but non-breaking), according to commonly observed practices.

 ? ^1.2.3 := >=1.2.3 <2.0.0-0

 ? ^0.2.3 := >=0.2.3 <0.3.0-0

 ? ^0.0.3 := >=0.0.3 <0.0.4-0

 ? ^1.2.3-beta.2 := >=1.2.3-beta.2 <2.0.0-0 Note that prereleases in the 1.2.3 version will

 be allowed, if they are greater than or equal to beta.2. So, 1.2.3-beta.4 would be al?

 lowed, but 1.2.4-beta.2 would not, because it is a prerelease of a different [major, mi?

 nor, patch] tuple.

 ? ^0.0.3-beta := >=0.0.3-beta <0.0.4-0 Note that prereleases in the 0.0.3 version only

 will be allowed, if they are greater than or equal to beta. So, 0.0.3-pr.2 would be al?

 lowed.

 When parsing caret ranges, a missing patch value desugars to the number 0, but will allow

 flexibility within that value, even if the major and minor versions are both 0.

 ? ^1.2.x := >=1.2.0 <2.0.0-0

 ? ^0.0.x := >=0.0.0 <0.1.0-0

 ? ^0.0 := >=0.0.0 <0.1.0-0

 A missing minor and patch values will desugar to zero, but also allow flexibility within

 those values, even if the major version is zero.

 ? ^1.x := >=1.0.0 <2.0.0-0

 ? ^0.x := >=0.0.0 <1.0.0-0 Page 7/13

 Range Grammar

 Putting all this together, here is a Backus-Naur grammar for ranges, for the benefit of

 parser authors:

 range-set ::= range (logical-or range) *

 logical-or ::= (' ') * '||' (' ') *

 range ::= hyphen | simple (' ' simple) * | ''

 hyphen ::= partial ' - ' partial

 simple ::= primitive | partial | tilde | caret

 primitive ::= ('<' | '>' | '>=' | '<=' | '=') partial

 partial ::= xr ('.' xr ('.' xr qualifier ?)?)?

 xr ::= 'x' | 'X' | '*' | nr

 nr ::= '0' | ['1'-'9'] (['0'-'9']) *

 tilde ::= '~' partial

 caret ::= '^' partial

 qualifier ::= ('-' pre)? ('+' build)?

 pre ::= parts

 build ::= parts

 parts ::= part ('.' part) *

 part ::= nr | [-0-9A-Za-z]+

Functions

 All methods and classes take a final options object argument. All options in this object

 are false by default. The options supported are:

 ? loose Be more forgiving about not-quite-valid semver strings. (Any resulting output

 will always be 100% strict compliant, of course.) For backwards compatibility reasons,

 if the options argument is a boolean value instead of an object, it is interpreted to be

 the loose param.

 ? includePrerelease Set to suppress the default behavior

 https://github.com/npm/node-semver#prerelease-tags of excluding prerelease tagged ver?

 sions from ranges unless they are explicitly opted into.

 Strict-mode Comparators and Ranges will be strict about the SemVer strings that they

 parse.

 ? valid(v): Return the parsed version, or null if it's not valid.

 ? inc(v, release): Return the version incremented by the release type (major, premajor, Page 8/13

 minor, preminor, patch, prepatch, or prerelease), or null if it's not valid

 ? premajor in one call will bump the version up to the next major version and down to a

 prerelease of that major version. preminor, and prepatch work the same way.

 ? If called from a non-prerelease version, the prerelease will work the same as

 prepatch. It increments the patch version, then makes a prerelease. If the input ver?

 sion is already a prerelease it simply increments it.

 ? prerelease(v): Returns an array of prerelease components, or null if none exist. Exam?

 ple: prerelease('1.2.3-alpha.1') -> ['alpha', 1]

 ? major(v): Return the major version number.

 ? minor(v): Return the minor version number.

 ? patch(v): Return the patch version number.

 ? intersects(r1, r2, loose): Return true if the two supplied ranges or comparators inter?

 sect.

 ? parse(v): Attempt to parse a string as a semantic version, returning either a SemVer ob?

 ject or null.

 Comparison

 ? gt(v1, v2): v1 > v2

 ? gte(v1, v2): v1 >= v2

 ? lt(v1, v2): v1 < v2

 ? lte(v1, v2): v1 <= v2

 ? eq(v1, v2): v1 == v2 This is true if they're logically equivalent, even if they're not

 the exact same string. You already know how to compare strings.

 ? neq(v1, v2): v1 != v2 The opposite of eq.

 ? cmp(v1, comparator, v2): Pass in a comparison string, and it'll call the corresponding

 function above. "===" and "!==" do simple string comparison, but are included for com?

 pleteness. Throws if an invalid comparison string is provided.

 ? compare(v1, v2): Return 0 if v1 == v2, or 1 if v1 is greater, or -1 if v2 is greater.

 Sorts in ascending order if passed to Array.sort().

 ? rcompare(v1, v2): The reverse of compare. Sorts an array of versions in descending or?

 der when passed to Array.sort().

 ? compareBuild(v1, v2): The same as compare but considers build when two versions are

 equal. Sorts in ascending order if passed to Array.sort(). v2 is greater. Sorts in

 ascending order if passed to Array.sort(). Page 9/13

 ? diff(v1, v2): Returns difference between two versions by the release type (major, prema?

 jor, minor, preminor, patch, prepatch, or prerelease), or null if the versions are the

 same.

 Comparators

 ? intersects(comparator): Return true if the comparators intersect

 Ranges

 ? validRange(range): Return the valid range or null if it's not valid

 ? satisfies(version, range): Return true if the version satisfies the range.

 ? maxSatisfying(versions, range): Return the highest version in the list that satisfies

 the range, or null if none of them do.

 ? minSatisfying(versions, range): Return the lowest version in the list that satisfies the

 range, or null if none of them do.

 ? minVersion(range): Return the lowest version that can possibly match the given range.

 ? gtr(version, range): Return true if version is greater than all the versions possible in

 the range.

 ? ltr(version, range): Return true if version is less than all the versions possible in

 the range.

 ? outside(version, range, hilo): Return true if the version is outside the bounds of the

 range in either the high or low direction. The hilo argument must be either the string

 '>' or '<'. (This is the function called by gtr and ltr.)

 ? intersects(range): Return true if any of the ranges comparators intersect

 ? simplifyRange(versions, range): Return a "simplified" range that matches the same items

 in versions list as the range specified. Note that it does not guarantee that it would

 match the same versions in all cases, only for the set of versions provided. This is

 useful when generating ranges by joining together multiple versions with || programmati?

 cally, to provide the user with something a bit more ergonomic. If the provided range

 is shorter in string-length than the generated range, then that is returned.

 ? subset(subRange, superRange): Return true if the subRange range is entirely contained by

 the superRange range.

 Note that, since ranges may be non-contiguous, a version might not be greater than a

 range, less than a range, or satisfy a range! For example, the range 1.2 <1.2.9 || >2.0.0

 would have a hole from 1.2.9 until 2.0.0, so the version 1.2.10 would not be greater than

 the range (because 2.0.1 satisfies, which is higher), nor less than the range (since 1.2.8 Page 10/13

 satisfies, which is lower), and it also does not satisfy the range.

 If you want to know if a version satisfies or does not satisfy a range, use the satis?

 fies(version, range) function.

 Coercion

 ? coerce(version, options): Coerces a string to semver if possible

 This aims to provide a very forgiving translation of a non-semver string to semver. It

 looks for the first digit in a string, and consumes all remaining characters which satisfy

 at least a partial semver (e.g., 1, 1.2, 1.2.3) up to the max permitted length (256 char?

 acters). Longer versions are simply truncated (4.6.3.9.2-alpha2 becomes 4.6.3). All sur?

 rounding text is simply ignored (v3.4 replaces v3.3.1 becomes 3.4.0). Only text which

 lacks digits will fail coercion (version one is not valid). The maximum length for any

 semver component considered for coercion is 16 characters; longer components will be ig?

 nored (10000000000000000.4.7.4 becomes 4.7.4). The maximum value for any semver component

 is Number.MAX_SAFE_INTEGER || (2**53 - 1); higher value components are invalid

 (9999999999999999.4.7.4 is likely invalid).

 If the options.rtl flag is set, then coerce will return the right-most coercible tuple

 that does not share an ending index with a longer coercible tuple. For example, 1.2.3.4

 will return 2.3.4 in rtl mode, not 4.0.0. 1.2.3/4 will return 4.0.0, because the 4 is not

 a part of any other overlapping SemVer tuple.

 Clean

 ? clean(version): Clean a string to be a valid semver if possible

 This will return a cleaned and trimmed semver version. If the provided version is not

 valid a null will be returned. This does not work for ranges.

 ex.

 ? s.clean(' = v 2.1.5foo'): null

 ? s.clean(' = v 2.1.5foo', { loose: true }): '2.1.5-foo'

 ? s.clean(' = v 2.1.5-foo'): null

 ? s.clean(' = v 2.1.5-foo', { loose: true }): '2.1.5-foo'

 ? s.clean('=v2.1.5'): '2.1.5'

 ? s.clean(' =v2.1.5'): 2.1.5

 ? s.clean(' 2.1.5 '): '2.1.5'

 ? s.clean('~1.0.0'): null

Exported Modules Page 11/13

 <!-- TODO: Make sure that all of these items are documented (classes aren't, eg), and then

 pull the module name into the documentation for that specific thing. -->

 You may pull in just the part of this semver utility that you need, if you are sensitive

 to packing and tree-shaking concerns. The main require('semver') export uses getter func?

 tions to lazily load the parts of the API that are used.

 The following modules are available:

 ? require('semver')

 ? require('semver/classes')

 ? require('semver/classes/comparator')

 ? require('semver/classes/range')

 ? require('semver/classes/semver')

 ? require('semver/functions/clean')

 ? require('semver/functions/cmp')

 ? require('semver/functions/coerce')

 ? require('semver/functions/compare')

 ? require('semver/functions/compare-build')

 ? require('semver/functions/compare-loose')

 ? require('semver/functions/diff')

 ? require('semver/functions/eq')

 ? require('semver/functions/gt')

 ? require('semver/functions/gte')

 ? require('semver/functions/inc')

 ? require('semver/functions/lt')

 ? require('semver/functions/lte')

 ? require('semver/functions/major')

 ? require('semver/functions/minor')

 ? require('semver/functions/neq')

 ? require('semver/functions/parse')

 ? require('semver/functions/patch')

 ? require('semver/functions/prerelease')

 ? require('semver/functions/rcompare')

 ? require('semver/functions/rsort')

 ? require('semver/functions/satisfies') Page 12/13

 ? require('semver/functions/sort')

 ? require('semver/functions/valid')

 ? require('semver/ranges/gtr')

 ? require('semver/ranges/intersects')

 ? require('semver/ranges/ltr')

 ? require('semver/ranges/max-satisfying')

 ? require('semver/ranges/min-satisfying')

 ? require('semver/ranges/min-version')

 ? require('semver/ranges/outside')

 ? require('semver/ranges/to-comparators')

 ? require('semver/ranges/valid')

 September 2021 SEMVER(1)

Page 13/13

