
Rocky Enterprise Linux 9.2 Manual Pages on command 'sem_overview.7'

$ man sem_overview.7

SEM_OVERVIEW(7) Linux Programmer's Manual SEM_OVERVIEW(7)

NAME

 sem_overview - overview of POSIX semaphores

DESCRIPTION

 POSIX semaphores allow processes and threads to synchronize their actions.

 A semaphore is an integer whose value is never allowed to fall below zero. Two operations

 can be performed on semaphores: increment the semaphore value by one (sem_post(3)); and

 decrement the semaphore value by one (sem_wait(3)). If the value of a semaphore is cur?

 rently zero, then a sem_wait(3) operation will block until the value becomes greater than

 zero.

 POSIX semaphores come in two forms: named semaphores and unnamed semaphores.

 Named semaphores

 A named semaphore is identified by a name of the form /somename; that is, a null-

 terminated string of up to NAME_MAX-4 (i.e., 251) characters consisting of an ini?

 tial slash, followed by one or more characters, none of which are slashes. Two

 processes can operate on the same named semaphore by passing the same name to

 sem_open(3).

 The sem_open(3) function creates a new named semaphore or opens an existing named

 semaphore. After the semaphore has been opened, it can be operated on using

 sem_post(3) and sem_wait(3). When a process has finished using the semaphore, it

 can use sem_close(3) to close the semaphore. When all processes have finished us?

 ing the semaphore, it can be removed from the system using sem_unlink(3).

 Unnamed semaphores (memory-based semaphores) Page 1/3

 An unnamed semaphore does not have a name. Instead the semaphore is placed in a

 region of memory that is shared between multiple threads (a thread-shared sema?

 phore) or processes (a process-shared semaphore). A thread-shared semaphore is

 placed in an area of memory shared between the threads of a process, for example, a

 global variable. A process-shared semaphore must be placed in a shared memory re?

 gion (e.g., a System V shared memory segment created using shmget(2), or a POSIX

 shared memory object built created using shm_open(3)).

 Before being used, an unnamed semaphore must be initialized using sem_init(3). It

 can then be operated on using sem_post(3) and sem_wait(3). When the semaphore is

 no longer required, and before the memory in which it is located is deallocated,

 the semaphore should be destroyed using sem_destroy(3).

 The remainder of this section describes some specific details of the Linux implementation

 of POSIX semaphores.

 Versions

 Prior to kernel 2.6, Linux supported only unnamed, thread-shared semaphores. On a system

 with Linux 2.6 and a glibc that provides the NPTL threading implementation, a complete im?

 plementation of POSIX semaphores is provided.

 Persistence

 POSIX named semaphores have kernel persistence: if not removed by sem_unlink(3), a sema?

 phore will exist until the system is shut down.

 Linking

 Programs using the POSIX semaphores API must be compiled with cc -pthread to link against

 the real-time library, librt.

 Accessing named semaphores via the filesystem

 On Linux, named semaphores are created in a virtual filesystem, normally mounted under

 /dev/shm, with names of the form sem.somename. (This is the reason that semaphore names

 are limited to NAME_MAX-4 rather than NAME_MAX characters.)

 Since Linux 2.6.19, ACLs can be placed on files under this directory, to control object

 permissions on a per-user and per-group basis.

NOTES

 System V semaphores (semget(2), semop(2), etc.) are an older semaphore API. POSIX sema?

 phores provide a simpler, and better designed interface than System V semaphores; on the

 other hand POSIX semaphores are less widely available (especially on older systems) than Page 2/3

 System V semaphores.

EXAMPLES

 An example of the use of various POSIX semaphore functions is shown in sem_wait(3).

SEE ALSO

 sem_close(3), sem_destroy(3), sem_getvalue(3), sem_init(3), sem_open(3), sem_post(3),

 sem_unlink(3), sem_wait(3), pthreads(7), shm_overview(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 SEM_OVERVIEW(7)

Page 3/3

