
Rocky Enterprise Linux 9.2 Manual Pages on command 'select_tut.2'

$ man select_tut.2

SELECT_TUT(2) Linux Programmer's Manual SELECT_TUT(2)

NAME

 select, pselect - synchronous I/O multiplexing

SYNOPSIS

 See select(2)

DESCRIPTION

 The select() and pselect() system calls are used to efficiently monitor multiple file de?

 scriptors, to see if any of them is, or becomes, "ready"; that is, to see whether I/O be?

 comes possible, or an "exceptional condition" has occurred on any of the file descriptors.

 This page provides background and tutorial information on the use of these system calls.

 For details of the arguments and semantics of select() and pselect(), see select(2).

 Combining signal and data events

 pselect() is useful if you are waiting for a signal as well as for file descriptor(s) to

 become ready for I/O. Programs that receive signals normally use the signal handler only

 to raise a global flag. The global flag will indicate that the event must be processed in

 the main loop of the program. A signal will cause the select() (or pselect()) call to re?

 turn with errno set to EINTR. This behavior is essential so that signals can be processed

 in the main loop of the program, otherwise select() would block indefinitely.

 Now, somewhere in the main loop will be a conditional to check the global flag. So we

 must ask: what if a signal arrives after the conditional, but before the select() call?

 The answer is that select() would block indefinitely, even though an event is actually

 pending. This race condition is solved by the pselect() call. This call can be used to

 set the signal mask to a set of signals that are to be received only within the pselect() Page 1/12

 call. For instance, let us say that the event in question was the exit of a child

 process. Before the start of the main loop, we would block SIGCHLD using sigprocmask(2).

 Our pselect() call would enable SIGCHLD by using an empty signal mask. Our program would

 look like:

 static volatile sig_atomic_t got_SIGCHLD = 0;

 static void

 child_sig_handler(int sig)

 {

 got_SIGCHLD = 1;

 }

 int

 main(int argc, char *argv[])

 {

 sigset_t sigmask, empty_mask;

 struct sigaction sa;

 fd_set readfds, writefds, exceptfds;

 int r;

 sigemptyset(&sigmask);

 sigaddset(&sigmask, SIGCHLD);

 if (sigprocmask(SIG_BLOCK, &sigmask, NULL) == -1) {

 perror("sigprocmask");

 exit(EXIT_FAILURE);

 }

 sa.sa_flags = 0;

 sa.sa_handler = child_sig_handler;

 sigemptyset(&sa.sa_mask);

 if (sigaction(SIGCHLD, &sa, NULL) == -1) {

 perror("sigaction");

 exit(EXIT_FAILURE);

 }

 sigemptyset(&empty_mask);

 for (;;) { /* main loop */

 /* Initialize readfds, writefds, and exceptfds Page 2/12

 before the pselect() call. (Code omitted.) */

 r = pselect(nfds, &readfds, &writefds, &exceptfds,

 NULL, &empty_mask);

 if (r == -1 && errno != EINTR) {

 /* Handle error */

 }

 if (got_SIGCHLD) {

 got_SIGCHLD = 0;

 /* Handle signalled event here; e.g., wait() for all

 terminated children. (Code omitted.) */

 }

 /* main body of program */

 }

 }

 Practical

 So what is the point of select()? Can't I just read and write to my file descriptors

 whenever I want? The point of select() is that it watches multiple descriptors at the

 same time and properly puts the process to sleep if there is no activity. UNIX program?

 mers often find themselves in a position where they have to handle I/O from more than one

 file descriptor where the data flow may be intermittent. If you were to merely create a

 sequence of read(2) and write(2) calls, you would find that one of your calls may block

 waiting for data from/to a file descriptor, while another file descriptor is unused though

 ready for I/O. select() efficiently copes with this situation.

 Select law

 Many people who try to use select() come across behavior that is difficult to understand

 and produces nonportable or borderline results. For instance, the above program is care?

 fully written not to block at any point, even though it does not set its file descriptors

 to nonblocking mode. It is easy to introduce subtle errors that will remove the advantage

 of using select(), so here is a list of essentials to watch for when using select().

 1. You should always try to use select() without a timeout. Your program should have

 nothing to do if there is no data available. Code that depends on timeouts is not

 usually portable and is difficult to debug.

 2. The value nfds must be properly calculated for efficiency as explained above. Page 3/12

 3. No file descriptor must be added to any set if you do not intend to check its result

 after the select() call, and respond appropriately. See next rule.

 4. After select() returns, all file descriptors in all sets should be checked to see if

 they are ready.

 5. The functions read(2), recv(2), write(2), and send(2) do not necessarily read/write

 the full amount of data that you have requested. If they do read/write the full

 amount, it's because you have a low traffic load and a fast stream. This is not al?

 ways going to be the case. You should cope with the case of your functions managing

 to send or receive only a single byte.

 6. Never read/write only in single bytes at a time unless you are really sure that you

 have a small amount of data to process. It is extremely inefficient not to read/write

 as much data as you can buffer each time. The buffers in the example below are 1024

 bytes although they could easily be made larger.

 7. Calls to read(2), recv(2), write(2), send(2), and select() can fail with the error

 EINTR, and calls to read(2), recv(2) write(2), and send(2) can fail with errno set to

 EAGAIN (EWOULDBLOCK). These results must be properly managed (not done properly

 above). If your program is not going to receive any signals, then it is unlikely you

 will get EINTR. If your program does not set nonblocking I/O, you will not get EA?

 GAIN.

 8. Never call read(2), recv(2), write(2), or send(2) with a buffer length of zero.

 9. If the functions read(2), recv(2), write(2), and send(2) fail with errors other than

 those listed in 7., or one of the input functions returns 0, indicating end of file,

 then you should not pass that file descriptor to select() again. In the example be?

 low, I close the file descriptor immediately, and then set it to -1 to prevent it be?

 ing included in a set.

 10. The timeout value must be initialized with each new call to select(), since some oper?

 ating systems modify the structure. pselect() however does not modify its timeout

 structure.

 11. Since select() modifies its file descriptor sets, if the call is being used in a loop,

 then the sets must be reinitialized before each call.

RETURN VALUE

 See select(2).

NOTES Page 4/12

 Generally speaking, all operating systems that support sockets also support select(). se?

 lect() can be used to solve many problems in a portable and efficient way that naive pro?

 grammers try to solve in a more complicated manner using threads, forking, IPCs, signals,

 memory sharing, and so on.

 The poll(2) system call has the same functionality as select(), and is somewhat more effi?

 cient when monitoring sparse file descriptor sets. It is nowadays widely available, but

 historically was less portable than select().

 The Linux-specific epoll(7) API provides an interface that is more efficient than se?

 lect(2) and poll(2) when monitoring large numbers of file descriptors.

EXAMPLES

 Here is an example that better demonstrates the true utility of select(). The listing be?

 low is a TCP forwarding program that forwards from one TCP port to another.

 #include <stdlib.h>

 #include <stdio.h>

 #include <unistd.h>

 #include <sys/select.h>

 #include <string.h>

 #include <signal.h>

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <arpa/inet.h>

 #include <errno.h>

 static int forward_port;

 #undef max

 #define max(x,y) ((x) > (y) ? (x) : (y))

 static int

 listen_socket(int listen_port)

 {

 struct sockaddr_in addr;

 int lfd;

 int yes;

 lfd = socket(AF_INET, SOCK_STREAM, 0);

 if (lfd == -1) { Page 5/12

 perror("socket");

 return -1;

 }

 yes = 1;

 if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR,

 &yes, sizeof(yes)) == -1) {

 perror("setsockopt");

 close(lfd);

 return -1;

 }

 memset(&addr, 0, sizeof(addr));

 addr.sin_port = htons(listen_port);

 addr.sin_family = AF_INET;

 if (bind(lfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {

 perror("bind");

 close(lfd);

 return -1;

 }

 printf("accepting connections on port %d\n", listen_port);

 listen(lfd, 10);

 return lfd;

 }

 static int

 connect_socket(int connect_port, char *address)

 {

 struct sockaddr_in addr;

 int cfd;

 cfd = socket(AF_INET, SOCK_STREAM, 0);

 if (cfd == -1) {

 perror("socket");

 return -1;

 }

 memset(&addr, 0, sizeof(addr)); Page 6/12

 addr.sin_port = htons(connect_port);

 addr.sin_family = AF_INET;

 if (!inet_aton(address, (struct in_addr *) &addr.sin_addr.s_addr)) {

 fprintf(stderr, "inet_aton(): bad IP address format\n");

 close(cfd);

 return -1;

 }

 if (connect(cfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {

 perror("connect()");

 shutdown(cfd, SHUT_RDWR);

 close(cfd);

 return -1;

 }

 return cfd;

 }

 #define SHUT_FD1 do { \

 if (fd1 >= 0) { \

 shutdown(fd1, SHUT_RDWR); \

 close(fd1); \

 fd1 = -1; \

 } \

 } while (0)

 #define SHUT_FD2 do { \

 if (fd2 >= 0) { \

 shutdown(fd2, SHUT_RDWR); \

 close(fd2); \

 fd2 = -1; \

 } \

 } while (0)

 #define BUF_SIZE 1024

 int

 main(int argc, char *argv[])

 { Page 7/12

 int h;

 int fd1 = -1, fd2 = -1;

 char buf1[BUF_SIZE], buf2[BUF_SIZE];

 int buf1_avail = 0, buf1_written = 0;

 int buf2_avail = 0, buf2_written = 0;

 if (argc != 4) {

 fprintf(stderr, "Usage\n\tfwd <listen-port> "

 "<forward-to-port> <forward-to-ip-address>\n");

 exit(EXIT_FAILURE);

 }

 signal(SIGPIPE, SIG_IGN);

 forward_port = atoi(argv[2]);

 h = listen_socket(atoi(argv[1]));

 if (h == -1)

 exit(EXIT_FAILURE);

 for (;;) {

 int ready, nfds = 0;

 ssize_t nbytes;

 fd_set readfds, writefds, exceptfds;

 FD_ZERO(&readfds);

 FD_ZERO(&writefds);

 FD_ZERO(&exceptfds);

 FD_SET(h, &readfds);

 nfds = max(nfds, h);

 if (fd1 > 0 && buf1_avail < BUF_SIZE)

 FD_SET(fd1, &readfds);

 /* Note: nfds is updated below, when fd1 is added to

 exceptfds. */

 if (fd2 > 0 && buf2_avail < BUF_SIZE)

 FD_SET(fd2, &readfds);

 if (fd1 > 0 && buf2_avail - buf2_written > 0)

 FD_SET(fd1, &writefds);

 if (fd2 > 0 && buf1_avail - buf1_written > 0) Page 8/12

 FD_SET(fd2, &writefds);

 if (fd1 > 0) {

 FD_SET(fd1, &exceptfds);

 nfds = max(nfds, fd1);

 }

 if (fd2 > 0) {

 FD_SET(fd2, &exceptfds);

 nfds = max(nfds, fd2);

 }

 ready = select(nfds + 1, &readfds, &writefds, &exceptfds, NULL);

 if (ready == -1 && errno == EINTR)

 continue;

 if (ready == -1) {

 perror("select()");

 exit(EXIT_FAILURE);

 }

 if (FD_ISSET(h, &readfds)) {

 socklen_t addrlen;

 struct sockaddr_in client_addr;

 int fd;

 addrlen = sizeof(client_addr);

 memset(&client_addr, 0, addrlen);

 fd = accept(h, (struct sockaddr *) &client_addr, &addrlen);

 if (fd == -1) {

 perror("accept()");

 } else {

 SHUT_FD1;

 SHUT_FD2;

 buf1_avail = buf1_written = 0;

 buf2_avail = buf2_written = 0;

 fd1 = fd;

 fd2 = connect_socket(forward_port, argv[3]);

 if (fd2 == -1) Page 9/12

 SHUT_FD1;

 else

 printf("connect from %s\n",

 inet_ntoa(client_addr.sin_addr));

 /* Skip any events on the old, closed file

 descriptors. */

 continue;

 }

 }

 /* NB: read OOB data before normal reads */

 if (fd1 > 0 && FD_ISSET(fd1, &exceptfds)) {

 char c;

 nbytes = recv(fd1, &c, 1, MSG_OOB);

 if (nbytes < 1)

 SHUT_FD1;

 else

 send(fd2, &c, 1, MSG_OOB);

 }

 if (fd2 > 0 && FD_ISSET(fd2, &exceptfds)) {

 char c;

 nbytes = recv(fd2, &c, 1, MSG_OOB);

 if (nbytes < 1)

 SHUT_FD2;

 else

 send(fd1, &c, 1, MSG_OOB);

 }

 if (fd1 > 0 && FD_ISSET(fd1, &readfds)) {

 nbytes = read(fd1, buf1 + buf1_avail,

 BUF_SIZE - buf1_avail);

 if (nbytes < 1)

 SHUT_FD1;

 else

 buf1_avail += nbytes; Page 10/12

 }

 if (fd2 > 0 && FD_ISSET(fd2, &readfds)) {

 nbytes = read(fd2, buf2 + buf2_avail,

 BUF_SIZE - buf2_avail);

 if (nbytes < 1)

 SHUT_FD2;

 else

 buf2_avail += nbytes;

 }

 if (fd1 > 0 && FD_ISSET(fd1, &writefds) && buf2_avail > 0) {

 nbytes = write(fd1, buf2 + buf2_written,

 buf2_avail - buf2_written);

 if (nbytes < 1)

 SHUT_FD1;

 else

 buf2_written += nbytes;

 }

 if (fd2 > 0 && FD_ISSET(fd2, &writefds) && buf1_avail > 0) {

 nbytes = write(fd2, buf1 + buf1_written,

 buf1_avail - buf1_written);

 if (nbytes < 1)

 SHUT_FD2;

 else

 buf1_written += nbytes;

 }

 /* Check if write data has caught read data */

 if (buf1_written == buf1_avail)

 buf1_written = buf1_avail = 0;

 if (buf2_written == buf2_avail)

 buf2_written = buf2_avail = 0;

 /* One side has closed the connection, keep

 writing to the other side until empty */

 if (fd1 < 0 && buf1_avail - buf1_written == 0) Page 11/12

 SHUT_FD2;

 if (fd2 < 0 && buf2_avail - buf2_written == 0)

 SHUT_FD1;

 }

 exit(EXIT_SUCCESS);

 }

 The above program properly forwards most kinds of TCP connections including OOB signal

 data transmitted by telnet servers. It handles the tricky problem of having data flow in

 both directions simultaneously. You might think it more efficient to use a fork(2) call

 and devote a thread to each stream. This becomes more tricky than you might suspect. An?

 other idea is to set nonblocking I/O using fcntl(2). This also has its problems because

 you end up using inefficient timeouts.

 The program does not handle more than one simultaneous connection at a time, although it

 could easily be extended to do this with a linked list of buffers?one for each connection.

 At the moment, new connections cause the current connection to be dropped.

SEE ALSO

 accept(2), connect(2), poll(2), read(2), recv(2), select(2), send(2), sigprocmask(2),

 write(2), epoll(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 SELECT_TUT(2)

Page 12/12

