
Rocky Enterprise Linux 9.2 Manual Pages on command 'sched_setscheduler.2'

$ man sched_setscheduler.2

SCHED_SETSCHEDULER(2) Linux Programmer's Manual SCHED_SETSCHEDULER(2)

NAME

 sched_setscheduler, sched_getscheduler - set and get scheduling policy/parameters

SYNOPSIS

 #include <sched.h>

 int sched_setscheduler(pid_t pid, int policy,

 const struct sched_param *param);

 int sched_getscheduler(pid_t pid);

DESCRIPTION

 The sched_setscheduler() system call sets both the scheduling policy and parameters for

 the thread whose ID is specified in pid. If pid equals zero, the scheduling policy and

 parameters of the calling thread will be set.

 The scheduling parameters are specified in the param argument, which is a pointer to a

 structure of the following form:

 struct sched_param {

 ...

 int sched_priority;

 ...

 };

 In the current implementation, the structure contains only one field, sched_priority. The

 interpretation of param depends on the selected policy.

 Currently, Linux supports the following "normal" (i.e., non-real-time) scheduling policies

 as values that may be specified in policy: Page 1/3

 SCHED_OTHER the standard round-robin time-sharing policy;

 SCHED_BATCH for "batch" style execution of processes; and

 SCHED_IDLE for running very low priority background jobs.

 For each of the above policies, param->sched_priority must be 0.

 Various "real-time" policies are also supported, for special time-critical applications

 that need precise control over the way in which runnable threads are selected for execu?

 tion. For the rules governing when a process may use these policies, see sched(7). The

 real-time policies that may be specified in policy are:

 SCHED_FIFO a first-in, first-out policy; and

 SCHED_RR a round-robin policy.

 For each of the above policies, param->sched_priority specifies a scheduling priority for

 the thread. This is a number in the range returned by calling sched_get_priority_min(2)

 and sched_get_priority_max(2) with the specified policy. On Linux, these system calls re?

 turn, respectively, 1 and 99.

 Since Linux 2.6.32, the SCHED_RESET_ON_FORK flag can be ORed in policy when calling

 sched_setscheduler(). As a result of including this flag, children created by fork(2) do

 not inherit privileged scheduling policies. See sched(7) for details.

 sched_getscheduler() returns the current scheduling policy of the thread identified by

 pid. If pid equals zero, the policy of the calling thread will be retrieved.

RETURN VALUE

 On success, sched_setscheduler() returns zero. On success, sched_getscheduler() returns

 the policy for the thread (a nonnegative integer). On error, both calls return -1, and

 errno is set appropriately.

ERRORS

 EINVAL Invalid arguments: pid is negative or param is NULL.

 EINVAL (sched_setscheduler()) policy is not one of the recognized policies.

 EINVAL (sched_setscheduler()) param does not make sense for the specified policy.

 EPERM The calling thread does not have appropriate privileges.

 ESRCH The thread whose ID is pid could not be found.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008 (but see BUGS below). The SCHED_BATCH and SCHED_IDLE policies

 are Linux-specific.

NOTES Page 2/3

 Further details of the semantics of all of the above "normal" and "real-time" scheduling

 policies can be found in the sched(7) manual page. That page also describes an additional

 policy, SCHED_DEADLINE, which is settable only via sched_setattr(2).

 POSIX systems on which sched_setscheduler() and sched_getscheduler() are available define

 _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

 POSIX.1 does not detail the permissions that an unprivileged thread requires in order to

 call sched_setscheduler(), and details vary across systems. For example, the Solaris 7

 manual page says that the real or effective user ID of the caller must match the real user

 ID or the save set-user-ID of the target.

 The scheduling policy and parameters are in fact per-thread attributes on Linux. The

 value returned from a call to gettid(2) can be passed in the argument pid. Specifying pid

 as 0 will operate on the attributes of the calling thread, and passing the value returned

 from a call to getpid(2) will operate on the attributes of the main thread of the thread

 group. (If you are using the POSIX threads API, then use pthread_setschedparam(3),

 pthread_getschedparam(3), and pthread_setschedprio(3), instead of the sched_*(2) system

 calls.)

BUGS

 POSIX.1 says that on success, sched_setscheduler() should return the previous scheduling

 policy. Linux sched_setscheduler() does not conform to this requirement, since it always

 returns 0 on success.

SEE ALSO

 chrt(1), nice(2), sched_get_priority_max(2), sched_get_priority_min(2),

 sched_getaffinity(2), sched_getattr(2), sched_getparam(2), sched_rr_get_interval(2),

 sched_setaffinity(2), sched_setattr(2), sched_setparam(2), sched_yield(2), setpriority(2),

 capabilities(7), cpuset(7), sched(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SCHED_SETSCHEDULER(2)

Page 3/3

