
Rocky Enterprise Linux 9.2 Manual Pages on command 'sched_getattr.2'

$ man sched_getattr.2

SCHED_SETATTR(2) Linux Programmer's Manual SCHED_SETATTR(2)

NAME

 sched_setattr, sched_getattr - set and get scheduling policy and attributes

SYNOPSIS

 #include <sched.h>

 int sched_setattr(pid_t pid, struct sched_attr *attr,

 unsigned int flags);

 int sched_getattr(pid_t pid, struct sched_attr *attr,

 unsigned int size, unsigned int flags);

DESCRIPTION

 sched_setattr()

 The sched_setattr() system call sets the scheduling policy and associated attributes for

 the thread whose ID is specified in pid. If pid equals zero, the scheduling policy and

 attributes of the calling thread will be set.

 Currently, Linux supports the following "normal" (i.e., non-real-time) scheduling policies

 as values that may be specified in policy:

 SCHED_OTHER the standard round-robin time-sharing policy;

 SCHED_BATCH for "batch" style execution of processes; and

 SCHED_IDLE for running very low priority background jobs.

 Various "real-time" policies are also supported, for special time-critical applications

 that need precise control over the way in which runnable threads are selected for execu?

 tion. For the rules governing when a process may use these policies, see sched(7). The

 real-time policies that may be specified in policy are: Page 1/6

 SCHED_FIFO a first-in, first-out policy; and

 SCHED_RR a round-robin policy.

 Linux also provides the following policy:

 SCHED_DEADLINE

 a deadline scheduling policy; see sched(7) for details.

 The attr argument is a pointer to a structure that defines the new scheduling policy and

 attributes for the specified thread. This structure has the following form:

 struct sched_attr {

 u32 size; /* Size of this structure */

 u32 sched_policy; /* Policy (SCHED_*) */

 u64 sched_flags; /* Flags */

 s32 sched_nice; /* Nice value (SCHED_OTHER,

 SCHED_BATCH) */

 u32 sched_priority; /* Static priority (SCHED_FIFO,

 SCHED_RR) */

 /* Remaining fields are for SCHED_DEADLINE */

 u64 sched_runtime;

 u64 sched_deadline;

 u64 sched_period;

 };

 The fields of the sched_attr structure are as follows:

 size This field should be set to the size of the structure in bytes, as in sizeof(struct

 sched_attr). If the provided structure is smaller than the kernel structure, any

 additional fields are assumed to be '0'. If the provided structure is larger than

 the kernel structure, the kernel verifies that all additional fields are 0; if they

 are not, sched_setattr() fails with the error E2BIG and updates size to contain the

 size of the kernel structure.

 The above behavior when the size of the user-space sched_attr structure does not

 match the size of the kernel structure allows for future extensibility of the in?

 terface. Malformed applications that pass oversize structures won't break in the

 future if the size of the kernel sched_attr structure is increased. In the future,

 it could also allow applications that know about a larger user-space sched_attr

 structure to determine whether they are running on an older kernel that does not Page 2/6

 support the larger structure.

 sched_policy

 This field specifies the scheduling policy, as one of the SCHED_* values listed

 above.

 sched_flags

 This field contains zero or more of the following flags that are ORed together to

 control scheduling behavior:

 SCHED_FLAG_RESET_ON_FORK

 Children created by fork(2) do not inherit privileged scheduling policies.

 See sched(7) for details.

 SCHED_FLAG_RECLAIM (since Linux 4.13)

 This flag allows a SCHED_DEADLINE thread to reclaim bandwidth unused by

 other real-time threads.

 SCHED_FLAG_DL_OVERRUN (since Linux 4.16)

 This flag allows an application to get informed about run-time overruns in

 SCHED_DEADLINE threads. Such overruns may be caused by (for example) coarse

 execution time accounting or incorrect parameter assignment. Notification

 takes the form of a SIGXCPU signal which is generated on each overrun.

 This SIGXCPU signal is process-directed (see signal(7)) rather than thread-

 directed. This is probably a bug. On the one hand, sched_setattr() is be?

 ing used to set a per-thread attribute. On the other hand, if the process-

 directed signal is delivered to a thread inside the process other than the

 one that had a run-time overrun, the application has no way of knowing which

 thread overran.

 sched_nice

 This field specifies the nice value to be set when specifying sched_policy as

 SCHED_OTHER or SCHED_BATCH. The nice value is a number in the range -20 (high pri?

 ority) to +19 (low priority); see sched(7).

 sched_priority

 This field specifies the static priority to be set when specifying sched_policy as

 SCHED_FIFO or SCHED_RR. The allowed range of priorities for these policies can be

 determined using sched_get_priority_min(2) and sched_get_priority_max(2). For

 other policies, this field must be specified as 0. Page 3/6

 sched_runtime

 This field specifies the "Runtime" parameter for deadline scheduling. The value is

 expressed in nanoseconds. This field, and the next two fields, are used only for

 SCHED_DEADLINE scheduling; for further details, see sched(7).

 sched_deadline

 This field specifies the "Deadline" parameter for deadline scheduling. The value

 is expressed in nanoseconds.

 sched_period

 This field specifies the "Period" parameter for deadline scheduling. The value is

 expressed in nanoseconds.

 The flags argument is provided to allow for future extensions to the interface; in the

 current implementation it must be specified as 0.

 sched_getattr()

 The sched_getattr() system call fetches the scheduling policy and the associated at?

 tributes for the thread whose ID is specified in pid. If pid equals zero, the scheduling

 policy and attributes of the calling thread will be retrieved.

 The size argument should be set to the size of the sched_attr structure as known to user

 space. The value must be at least as large as the size of the initially published

 sched_attr structure, or the call fails with the error EINVAL.

 The retrieved scheduling attributes are placed in the fields of the sched_attr structure

 pointed to by attr. The kernel sets attr.size to the size of its sched_attr structure.

 If the caller-provided attr buffer is larger than the kernel's sched_attr structure, the

 additional bytes in the user-space structure are not touched. If the caller-provided

 structure is smaller than the kernel sched_attr structure, the kernel will silently not

 return any values which would be stored outside the provided space. As with sched_se?

 tattr(), these semantics allow for future extensibility of the interface.

 The flags argument is provided to allow for future extensions to the interface; in the

 current implementation it must be specified as 0.

RETURN VALUE

 On success, sched_setattr() and sched_getattr() return 0. On error, -1 is returned, and

 errno is set to indicate the cause of the error.

ERRORS

 sched_getattr() and sched_setattr() can both fail for the following reasons: Page 4/6

 EINVAL attr is NULL; or pid is negative; or flags is not zero.

 ESRCH The thread whose ID is pid could not be found.

 In addition, sched_getattr() can fail for the following reasons:

 E2BIG The buffer specified by size and attr is too small.

 EINVAL size is invalid; that is, it is smaller than the initial version of the sched_attr

 structure (48 bytes) or larger than the system page size.

 In addition, sched_setattr() can fail for the following reasons:

 E2BIG The buffer specified by size and attr is larger than the kernel structure, and one

 or more of the excess bytes is nonzero.

 EBUSY SCHED_DEADLINE admission control failure, see sched(7).

 EINVAL attr.sched_policy is not one of the recognized policies; attr.sched_flags contains

 a flag other than SCHED_FLAG_RESET_ON_FORK; or attr.sched_priority is invalid; or

 attr.sched_policy is SCHED_DEADLINE and the deadline scheduling parameters in attr

 are invalid.

 EPERM The caller does not have appropriate privileges.

 EPERM The CPU affinity mask of the thread specified by pid does not include all CPUs in

 the system (see sched_setaffinity(2)).

VERSIONS

 These system calls first appeared in Linux 3.14.

CONFORMING TO

 These system calls are nonstandard Linux extensions.

NOTES

 sched_setattr() provides a superset of the functionality of sched_setscheduler(2),

 sched_setparam(2), nice(2), and (other than the ability to set the priority of all pro?

 cesses belonging to a specified user or all processes in a specified group) setprior?

 ity(2). Analogously, sched_getattr() provides a superset of the functionality of

 sched_getscheduler(2), sched_getparam(2), and (partially) getpriority(2).

BUGS

 In Linux versions up to 3.15, sched_setattr() failed with the error EFAULT instead of

 E2BIG for the case described in ERRORS.

 In Linux versions up to 5.3, sched_getattr() failed with the error EFBIG if the in-kernel

 sched_attr structure was larger than the size passed by user space.

SEE ALSO Page 5/6

 chrt(1), nice(2), sched_get_priority_max(2), sched_get_priority_min(2),

 sched_getaffinity(2), sched_getparam(2), sched_getscheduler(2), sched_rr_get_interval(2),

 sched_setaffinity(2), sched_setparam(2), sched_setscheduler(2), sched_yield(2),

 setpriority(2), pthread_getschedparam(3), pthread_setschedparam(3),

 pthread_setschedprio(3), capabilities(7), cpuset(7), sched(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SCHED_SETATTR(2)

Page 6/6

