
Rocky Enterprise Linux 9.2 Manual Pages on command 'sane-test.5'

$ man sane-test.5

sane-test(5) SANE Scanner Access Now Easy sane-test(5)

NAME

 sane-test - SANE backend for testing frontends

DESCRIPTION

 The sane-test library implements a SANE (Scanner Access Now Easy) backend that allows

 testing the SANE installation and SANE frontends. It provides access to a (nearly) unlim?

 ited number of virtual devices. There is no support for real scanners or cameras. How?

 ever, the backend simulates scanning and setting options.

 The idea is not only to find bugs in frontends but also to show all capabilities of SANE.

 Therefore sane-test implements functions and options that are not (or seldom) found in

 other backends.

 The backend is commented out in /etc/sane.d/dll.conf, so either the comment character must

 be removed or the backend must be called explicitly. E.g. scanimage -d test or xscanim?

 age test.

SCAN MODE OPTIONS

 Option mode selects the scan mode (Gray or Color).

 Option depth determines the number of bits per sample (1. 8, or 16). Keep in mind, that Page 1/7

 this value refers to the sample, not the pixel. So depth=16 results in 48 bits per pixel

 in color mode. The most usual combinations are mode=Gray, depth=1 for lineart, mode=Gray,

 depth=8 for gray and mode=Color, depth=8 for color mode. The combination of color and

 1-bit mode is quite obscure (8 colors) but allowed in the SANE standard. However, the

 meaning of bits is not defined. Currently 1 = high intensity and 0 = low intensity is

 used.

 Setting option hand-scanner results in the test-backend behaving like a hand-scanner.

 Hand-scanners do not know the image height a priori. Instead, they return a height of -1.

 Setting this option allows one to test whether a frontend can handle this correctly. This

 option also enables a fixed width of 11 cm.

 Setting option three-pass simulates a three-pass scanner. Older color scanners needed to

 scan the image once per color (red/green/blue) to get the full image. Therefore, in this

 mode three single frames are transmitted in color mode.

 Option three-pass-order provides support for changing the order of the three frames (see

 option three-pass above). A frontend should support all orders.

 Option resolution sets the resolution of the image in dots per inch.

 Option source can be used to simulate an Automatic Document Feeder (ADF). After 10 scans,

 the ADF will be "empty".

SPECIAL OPTIONS

 Option test-picture allows one to set the image that's returned to the frontend. While

 "Solid white" and "Solid black" are quite obvious, the other options need some more expla?

 nation. Color patterns are used to determine if all modes and their colors are repre?

 sented correctly by the frontend. The grid should look like the same in every mode and

 resolution. A table of all the test pictures can be found at:

 http://www.meier-geinitz.de/sane/test-backend/test-pictures.html.

 If option invert-endianness is set, the upper and lower bytes of image data in 16 bit Page 2/7

 modes are exchanged. This option can be used to test the 16 bit modes of frontends, e.g.

 if the frontend uses the correct endianness.

 If option read-limit is set, the maximum amount of data transferred with each call to

 sane_read() is limited.

 Option read-limit-size sets the limit for option read-limit. A low limit slows down scan?

 ning. It can be used to detect errors in frontend that occur because of wrong assumptions

 on the size of the buffer or timing problems.

 Option read-delay enables delaying data to the frontend.

 Option read-delay-duration selects the number of microseconds the backends waits after

 each transfer of a buffer. This option is useful to find timing-related bugs, especially

 if used over the network.

 If option read-return-value is different from "Default", the selected status will be re?

 turned by every call to sane_read(). This is useful to test the frontend's handling of

 the SANE statuses.

 If option ppl-loss is different from 0, it determines the number of pixels that are "lost"

 at the end of each line. That means, lines are padded with unused data.

 Option fuzzy-parameters selects that fuzzy (inexact) parameters are returned as long as

 the scan hasn't been started. This option can be used to test if the frontend uses the

 parameters it got before the start of the scan (which it shouldn't).

 Option non-blocking determines if non-blocking IO for sane_read() should be used if sup?

 ported by the frontend.

 If option select-fd is set, the backend offers a select filedescriptor for detecting if

 sane_read() will return data.

Page 3/7

 If option enable-test-options is set, a fairly big list of options for testing the various

 SANE option types is enabled.

 Option print-options can be used to print a list of all options to standard error.

GEOMETRY OPTIONS

 Option tl-x determines the top-left x position of the scan area.

 Option tl-y determines the top-left y position of the scan area.

 Option br-x determines the bottom-right x position of the scan area.

 Option br-y determines the bottom-right y position of the scan area.

BOOL TEST OPTIONS

 There are 6 bool test options in total. Each option is numbered. (3/6) means: this is

 option 3 of 6. The numbering scheme is intended for easier detection of options not dis?

 played by the frontend (because of missing support or bugs).

 Option bool-soft-select-soft-detect (1/6) is a bool test option that has soft select and

 soft detect (and advanced) capabilities. That's just a normal bool option.

 Option bool-hard-select-soft-detect (2/6) is a bool test option that has hard select and

 soft detect (and advanced) capabilities. That means the option can't be set by the front?

 end but by the user (e.g. by pressing a button at the device).

 Option bool-hard-select (3/6) is a bool test option that has hard select (and advanced)

 capabilities. That means the option can't be set by the frontend but by the user (e.g. by

 pressing a button at the device) and can't be read by the frontend.

 Option bool-soft-detect (4/6) is a bool test option that has soft detect (and advanced)

 capabilities. That means the option is read-only.

Page 4/7

 Option bool-soft-select-soft-detect-emulated (5/6) is a Bool test option that has soft se?

 lect, soft detect, and emulated (and advanced) capabilities.

 Option bool-soft-select-soft-detect-auto (6/6) is a Bool test option that has soft select,

 soft detect, and automatic (and advanced) capabilities. This option can be automatically

 set by the backend.

INT TEST OPTIONS

 There are 6 int test options in total.

 Option int (1/6) is an int test option with no unit and no constraint set.

 Option int-constraint-range (2/6) is an int test option with unit pixel and constraint

 range set. Minimum is 4, maximum 192, and quant is 2.

 Option int-constraint-word-list (3/6) is an int test option with unit bits and constraint

 word list set.

 Option int-constraint-array (4/6) is an int test option with unit mm and using an array

 without constraints.

 Option int-constraint-array-constraint-range (5/6) is an int test option with unit mm and

 using an array with a range constraint. Minimum is 4, maximum 192, and quant is 2.

 Option int-constraint-array-constraint-word-list (6/6) is an int test option with unit

 percent and using an array a word list constraint.

FIXED TEST OPTIONS

 There are 3 fixed test options in total.

 Option fixed (1/3) is a fixed test option with no unit and no constraint set.

 Option fixed-constraint-range (2/3) is a fixed test option with unit microsecond and con? Page 5/7

 straint range set. Minimum is -42.17, maximum 32767.9999, and quant is 2.0.

 Option fixed-constraint-word-list (3/3) is a Fixed test option with no unit and constraint

 word list set.

STRING TEST OPTIONS

 There are 3 string test options in total.

 Option string (1/3) is a string test option without constraint.

 Option string-constraint-string-list (2/3) is a string test option with string list con?

 straint.

 Option string-constraint-long-string-list (3/3) is a string test option with string list

 constraint. Contains some more entries...

BUTTON TEST OPTION

 Option button (1/1) is a Button test option. Prints some text...

FILES

 /etc/sane.d/test.conf

 The backend configuration file (see also description of SANE_CONFIG_DIR below). The

 initial values of most of the basic SANE options can be configured in this file. A

 template containing all the default values is provided together with this backend.

 One of the more interesting values may be number_of_devices. It can be used to

 check the frontend's ability to show a long list of devices. The config values

 concerning resolution and geometry can be useful to test the handling of big file

 sizes.

 /usr/lib/x86_64-linux-gnu/sane/libsane-test.a

 The static library implementing this backend.

 /usr/lib/x86_64-linux-gnu/sane/libsane-test.so Page 6/7

 The shared library implementing this backend (present on systems that support dy?

 namic loading).

ENVIRONMENT

 SANE_CONFIG_DIR

 This environment variable specifies the list of directories that may contain the

 configuration file. On *NIX systems, the directories are separated by a colon

 (`:'), under OS/2, they are separated by a semi-colon (`;'). If this variable is

 not set, the configuration file is searched in two default directories: first, the

 current working directory (".") and then in /etc/sane.d. If the value of the envi?

 ronment variable ends with the directory separator character, then the default di?

 rectories are searched after the explicitly specified directories. For example,

 setting SANE_CONFIG_DIR to "/tmp/config:" would result in directories tmp/config,

 ., and /etc/sane.d being searched (in this order).

 SANE_DEBUG_TEST

 If the library was compiled with debug support enabled, this environment variable

 controls the debug level for this backend. Higher debug levels increase the ver?

 bosity of the output.

 Example: export SANE_DEBUG_TEST=4

SEE ALSO

 sane(7), scanimage(1), xscanimage(1)

 http://www.meier-geinitz.de/sane/test-backend/

AUTHOR

 Henning Meier-Geinitz <henning@meier-geinitz.de>

BUGS

 - config file values aren't tested for correctness

 14 Jul 2008 sane-test(5) Page 7/7

