
Rocky Enterprise Linux 9.2 Manual Pages on command 'rtld-audit.7'

$ man rtld-audit.7

RTLD-AUDIT(7) Linux Programmer's Manual RTLD-AUDIT(7)

NAME

 rtld-audit - auditing API for the dynamic linker

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <link.h>

DESCRIPTION

 The GNU dynamic linker (run-time linker) provides an auditing API that allows an applica?

 tion to be notified when various dynamic linking events occur. This API is very similar

 to the auditing interface provided by the Solaris run-time linker. The necessary con?

 stants and prototypes are defined by including <link.h>.

 To use this interface, the programmer creates a shared library that implements a standard

 set of function names. Not all of the functions need to be implemented: in most cases, if

 the programmer is not interested in a particular class of auditing event, then no imple?

 mentation needs to be provided for the corresponding auditing function.

 To employ the auditing interface, the environment variable LD_AUDIT must be defined to

 contain a colon-separated list of shared libraries, each of which can implement (parts of)

 the auditing API. When an auditable event occurs, the corresponding function is invoked

 in each library, in the order that the libraries are listed.

 la_version()

 unsigned int la_version(unsigned int version);

 This is the only function that must be defined by an auditing library: it performs the

 initial handshake between the dynamic linker and the auditing library. When invoking this Page 1/9

 function, the dynamic linker passes, in version, the highest version of the auditing in?

 terface that the linker supports.

 A typical implementation of this function simply returns the constant LAV_CURRENT, which

 indicates the version of <link.h> that was used to build the audit module. If the dynamic

 linker does not support this version of the audit interface, it will refuse to activate

 this audit module. If the function returns zero, the dynamic linker also does not acti?

 vate this audit module.

 In order to enable backwards compatibility with older dynamic linkers, an audit module can

 examine the version argument and return an earlier version than LAV_CURRENT, assuming the

 module can adjust its implementation to match the requirements of the previous version of

 the audit interface. The la_version function should not return the value of version with?

 out further checks because it could correspond to an interface that does not match the

 <link.h> definitions used to build the audit module.

 la_objsearch()

 char *la_objsearch(const char *name, uintptr_t *cookie,

 unsigned int flag);

 The dynamic linker invokes this function to inform the auditing library that it is about

 to search for a shared object. The name argument is the filename or pathname that is to

 be searched for. cookie identifies the shared object that initiated the search. flag is

 set to one of the following values:

 LA_SER_ORIG This is the original name that is being searched for. Typically, this

 name comes from an ELF DT_NEEDED entry, or is the filename argument given

 to dlopen(3).

 LA_SER_LIBPATH name was created using a directory specified in LD_LIBRARY_PATH.

 LA_SER_RUNPATH name was created using a directory specified in an ELF DT_RPATH or

 DT_RUNPATH list.

 LA_SER_CONFIG name was found via the ldconfig(8) cache (/etc/ld.so.cache).

 LA_SER_DEFAULT name was found via a search of one of the default directories.

 LA_SER_SECURE name is specific to a secure object (unused on Linux).

 As its function result, la_objsearch() returns the pathname that the dynamic linker should

 use for further processing. If NULL is returned, then this pathname is ignored for fur?

 ther processing. If this audit library simply intends to monitor search paths, then name

 should be returned. Page 2/9

 la_activity()

 void la_activity(uintptr_t *cookie, unsigned int flag);

 The dynamic linker calls this function to inform the auditing library that link-map activ?

 ity is occurring. cookie identifies the object at the head of the link map. When the dy?

 namic linker invokes this function, flag is set to one of the following values:

 LA_ACT_ADD New objects are being added to the link map.

 LA_ACT_DELETE Objects are being removed from the link map.

 LA_ACT_CONSISTENT Link-map activity has been completed: the map is once again consistent.

 la_objopen()

 unsigned int la_objopen(struct link_map *map, Lmid_t lmid,

 uintptr_t *cookie);

 The dynamic linker calls this function when a new shared object is loaded. The map argu?

 ment is a pointer to a link-map structure that describes the object. The lmid field has

 one of the following values

 LM_ID_BASE Link map is part of the initial namespace.

 LM_ID_NEWLM Link map is part of a new namespace requested via dlmopen(3).

 cookie is a pointer to an identifier for this object. The identifier is provided to later

 calls to functions in the auditing library in order to identify this object. This identi?

 fier is initialized to point to object's link map, but the audit library can change the

 identifier to some other value that it may prefer to use to identify the object.

 As its return value, la_objopen() returns a bit mask created by ORing zero or more of the

 following constants, which allow the auditing library to select the objects to be moni?

 tored by la_symbind*():

 LA_FLG_BINDTO Audit symbol bindings to this object.

 LA_FLG_BINDFROM Audit symbol bindings from this object.

 A return value of 0 from la_objopen() indicates that no symbol bindings should be audited

 for this object.

 la_objclose()

 unsigned int la_objclose(uintptr_t *cookie);

 The dynamic linker invokes this function after any finalization code for the object has

 been executed, before the object is unloaded. The cookie argument is the identifier ob?

 tained from a previous invocation of la_objopen().

 In the current implementation, the value returned by la_objclose() is ignored. Page 3/9

 la_preinit()

 void la_preinit(uintptr_t *cookie);

 The dynamic linker invokes this function after all shared objects have been loaded, before

 control is passed to the application (i.e., before calling main()). Note that main() may

 still later dynamically load objects using dlopen(3).

 la_symbind*()

 uintptr_t la_symbind32(Elf32_Sym *sym, unsigned int ndx,

 uintptr_t *refcook, uintptr_t *defcook,

 unsigned int *flags, const char *symname);

 uintptr_t la_symbind64(Elf64_Sym *sym, unsigned int ndx,

 uintptr_t *refcook, uintptr_t *defcook,

 unsigned int *flags, const char *symname);

 The dynamic linker invokes one of these functions when a symbol binding occurs between two

 shared objects that have been marked for auditing notification by la_objopen(). The

 la_symbind32() function is employed on 32-bit platforms; the la_symbind64() function is

 employed on 64-bit platforms.

 The sym argument is a pointer to a structure that provides information about the symbol

 being bound. The structure definition is shown in <elf.h>. Among the fields of this

 structure, st_value indicates the address to which the symbol is bound.

 The ndx argument gives the index of the symbol in the symbol table of the bound shared ob?

 ject.

 The refcook argument identifies the shared object that is making the symbol reference;

 this is the same identifier that is provided to the la_objopen() function that returned

 LA_FLG_BINDFROM. The defcook argument identifies the shared object that defines the ref?

 erenced symbol; this is the same identifier that is provided to the la_objopen() function

 that returned LA_FLG_BINDTO.

 The symname argument points a string containing the name of the symbol.

 The flags argument is a bit mask that both provides information about the symbol and can

 be used to modify further auditing of this PLT (Procedure Linkage Table) entry. The dy?

 namic linker may supply the following bit values in this argument:

 LA_SYMB_DLSYM The binding resulted from a call to dlsym(3).

 LA_SYMB_ALTVALUE A previous la_symbind*() call returned an alternate value for this

 symbol. Page 4/9

 By default, if the auditing library implements la_pltenter() and la_pltexit() functions

 (see below), then these functions are invoked, after la_symbind(), for PLT entries, each

 time the symbol is referenced. The following flags can be ORed into *flags to change this

 default behavior:

 LA_SYMB_NOPLTENTER Don't call la_pltenter() for this symbol.

 LA_SYMB_NOPLTEXIT Don't call la_pltexit() for this symbol.

 The return value of la_symbind32() and la_symbind64() is the address to which control

 should be passed after the function returns. If the auditing library is simply monitoring

 symbol bindings, then it should return sym->st_value. A different value may be returned

 if the library wishes to direct control to an alternate location.

 la_pltenter()

 The precise name and argument types for this function depend on the hardware platform.

 (The appropriate definition is supplied by <link.h>.) Here is the definition for x86-32:

 Elf32_Addr la_i86_gnu_pltenter(Elf32_Sym *sym, unsigned int ndx,

 uintptr_t *refcook, uintptr_t *defcook,

 La_i86_regs *regs, unsigned int *flags,

 const char *symname, long *framesizep);

 This function is invoked just before a PLT entry is called, between two shared objects

 that have been marked for binding notification.

 The sym, ndx, refcook, defcook, and symname are as for la_symbind*().

 The regs argument points to a structure (defined in <link.h>) containing the values of

 registers to be used for the call to this PLT entry.

 The flags argument points to a bit mask that conveys information about, and can be used to

 modify subsequent auditing of, this PLT entry, as for la_symbind*().

 The framesizep argument points to a long int buffer that can be used to explicitly set the

 frame size used for the call to this PLT entry. If different la_pltenter() invocations

 for this symbol return different values, then the maximum returned value is used. The

 la_pltexit() function is called only if this buffer is explicitly set to a suitable value.

 The return value of la_pltenter() is as for la_symbind*().

 la_pltexit()

 The precise name and argument types for this function depend on the hardware platform.

 (The appropriate definition is supplied by <link.h>.) Here is the definition for x86-32:

 unsigned int la_i86_gnu_pltexit(Elf32_Sym *sym, unsigned int ndx, Page 5/9

 uintptr_t *refcook, uintptr_t *defcook,

 const La_i86_regs *inregs, La_i86_retval *outregs,

 const char *symname);

 This function is called when a PLT entry, made between two shared objects that have been

 marked for binding notification, returns. The function is called just before control re?

 turns to the caller of the PLT entry.

 The sym, ndx, refcook, defcook, and symname are as for la_symbind*().

 The inregs argument points to a structure (defined in <link.h>) containing the values of

 registers used for the call to this PLT entry. The outregs argument points to a structure

 (defined in <link.h>) containing return values for the call to this PLT entry. These val?

 ues can be modified by the caller, and the changes will be visible to the caller of the

 PLT entry.

 In the current GNU implementation, the return value of la_pltexit() is ignored.

CONFORMING TO

 This API is nonstandard, but very similar to the Solaris API, described in the Solaris

 Linker and Libraries Guide, in the chapter Runtime Linker Auditing Interface.

NOTES

 Note the following differences from the Solaris dynamic linker auditing API:

 * The Solaris la_objfilter() interface is not supported by the GNU implementation.

 * The Solaris la_symbind32() and la_pltexit() functions do not provide a symname argu?

 ment.

 * The Solaris la_pltexit() function does not provide inregs and outregs arguments (but

 does provide a retval argument with the function return value).

BUGS

 In glibc versions up to and include 2.9, specifying more than one audit library in LD_AU?

 DIT results in a run-time crash. This is reportedly fixed in glibc 2.10.

EXAMPLES

 #include <link.h>

 #include <stdio.h>

 unsigned int

 la_version(unsigned int version)

 {

 printf("la_version(): version = %u; LAV_CURRENT = %u\n", Page 6/9

 version, LAV_CURRENT);

 return LAV_CURRENT;

 }

 char *

 la_objsearch(const char *name, uintptr_t *cookie, unsigned int flag)

 {

 printf("la_objsearch(): name = %s; cookie = %p", name, cookie);

 printf("; flag = %s\n",

 (flag == LA_SER_ORIG) ? "LA_SER_ORIG" :

 (flag == LA_SER_LIBPATH) ? "LA_SER_LIBPATH" :

 (flag == LA_SER_RUNPATH) ? "LA_SER_RUNPATH" :

 (flag == LA_SER_DEFAULT) ? "LA_SER_DEFAULT" :

 (flag == LA_SER_CONFIG) ? "LA_SER_CONFIG" :

 (flag == LA_SER_SECURE) ? "LA_SER_SECURE" :

 "???");

 return name;

 }

 void

 la_activity (uintptr_t *cookie, unsigned int flag)

 {

 printf("la_activity(): cookie = %p; flag = %s\n", cookie,

 (flag == LA_ACT_CONSISTENT) ? "LA_ACT_CONSISTENT" :

 (flag == LA_ACT_ADD) ? "LA_ACT_ADD" :

 (flag == LA_ACT_DELETE) ? "LA_ACT_DELETE" :

 "???");

 }

 unsigned int

 la_objopen(struct link_map *map, Lmid_t lmid, uintptr_t *cookie)

 {

 printf("la_objopen(): loading \"%s\"; lmid = %s; cookie=%p\n",

 map->l_name,

 (lmid == LM_ID_BASE) ? "LM_ID_BASE" :

 (lmid == LM_ID_NEWLM) ? "LM_ID_NEWLM" : Page 7/9

 "???",

 cookie);

 return LA_FLG_BINDTO | LA_FLG_BINDFROM;

 }

 unsigned int

 la_objclose (uintptr_t *cookie)

 {

 printf("la_objclose(): %p\n", cookie);

 return 0;

 }

 void

 la_preinit(uintptr_t *cookie)

 {

 printf("la_preinit(): %p\n", cookie);

 }

 uintptr_t

 la_symbind32(Elf32_Sym *sym, unsigned int ndx, uintptr_t *refcook,

 uintptr_t *defcook, unsigned int *flags, const char *symname)

 {

 printf("la_symbind32(): symname = %s; sym->st_value = %p\n",

 symname, sym->st_value);

 printf(" ndx = %u; flags = %#x", ndx, *flags);

 printf("; refcook = %p; defcook = %p\n", refcook, defcook);

 return sym->st_value;

 }

 uintptr_t

 la_symbind64(Elf64_Sym *sym, unsigned int ndx, uintptr_t *refcook,

 uintptr_t *defcook, unsigned int *flags, const char *symname)

 {

 printf("la_symbind64(): symname = %s; sym->st_value = %p\n",

 symname, sym->st_value);

 printf(" ndx = %u; flags = %#x", ndx, *flags);

 printf("; refcook = %p; defcook = %p\n", refcook, defcook); Page 8/9

 return sym->st_value;

 }

 Elf32_Addr

 la_i86_gnu_pltenter(Elf32_Sym *sym, unsigned int ndx,

 uintptr_t *refcook, uintptr_t *defcook, La_i86_regs *regs,

 unsigned int *flags, const char *symname, long *framesizep)

 {

 printf("la_i86_gnu_pltenter(): %s (%p)\n", symname, sym->st_value);

 return sym->st_value;

 }

SEE ALSO

 ldd(1), dlopen(3), ld.so(8), ldconfig(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 RTLD-AUDIT(7)

Page 9/9

